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Abstract 
 

Model pruning methods have attracted huge attention owing to the increasing demand of 
deploying models on low-resource devices recently. Most existing methods use the weight 
norm of filters to represent their importance, and discard the ones with small value directly to 
achieve the pruning target, which ignores the contribution of the small norm filters. This is not 
only results in filter contribution waste, but also gives comparable performance to training 
with the random initialized weights [1]. In this paper, we point out that the small norm filters 
can harm the performance of the pruned model greatly, if they are discarded directly. 
Therefore, we propose a novel filter contribution recycle (FCR) method for structured model 
pruning to resolve the fore-mentioned problem. FCR collects and reassembles contribution 
from the small norm filters to obtain a mixed contribution collector, and then assigns the 
reassembled contribution to other filters with higher probability to be preserved. To achieve 
the target FLOPs, FCR also adopts a weight decay strategy for the small norm filters. To 
explore the effectiveness of our approach, extensive experiments are conducted on 
ImageNet2012 and CIFAR-10 datasets, and superior results are reported when comparing 
with other methods under the same or even more FLOPs reduction. In addition, our method is 
flexible to be combined with other different pruning criterions. 
 
 
Keywords: Model pruning, Structured pruning, Filter contribution recycle, Filter weight 
reutilization  
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1. Introduction 

During the past years, convolutional neural networks (CNNs) have achieved state-of-the-art 
performance in computer vision tasks such as image classification [2,3], object detection [4,5] 
and so on. To achieve excellent performance, the architecture of CNNs has become more and 
more complicated, and the number of parameters increases quickly. Deploying these huge 
models require expensive computation and memory costs, which prevent their usage on 
resource-limited devices, such as mobile phones [6,7]. Especially, a large number of sensors in 
the field of Industrial Internet of Things (IIoT) [8], produces gigantic massive data for 
facilitating a wide range application of IIOT. Due to the limitation of network transformation 
[9] and the requirement of real-time feedback, those edge devices can only be performed 
lightweight CNN models. Thus it is very necessary to obtain a lightweight CNN model, which 
not only has the advantage of low computation and memory costs, but also has the competitive 
performance comparing to the complicated one. 

To address this issue, many model compression methods have been proposed, such as 
model pruning [10,11], knowledge distillation [12,13] and parameter quantization [14,15]. 
Among them, model pruning has the longest history, which can be dated back to 1980s [16]. 
Based on the intuition that a filter with unimportant knowledge [12] has few contribution to 
the model performance, model pruning methods directly discard unimportant filters from the 
original over-parameterized model, meanwhile, they maintain the performance almost 
unchanged or slightly decreased. The knowledge or contribution of a filter is usually measured 
by its norm, e.g. LASSO [17]. In short, the purpose of model pruning is to find and discard 
filters with relatively small contribution. 

Generally, model pruning methods can be categorized into two different classes, 
non-structured pruning and structured pruning. Non-structured pruning [10,18] can achieve 
model sparsity, but it may be less efficient for saving the computation and memory costs. On 
the contrary, structured pruning [11,19], including filter, channel and block pruning, is more 
friendly to resource-limited devices. Therefore, structured pruning is more suitable to obtain 
the lightweight model and to accelerate model inference time in a variety of vision tasks. 

However, most existing structured pruning methods suffer from one problem: The 
contribution waste of discarded filters. In order to reach the target FLOPs, filters with small 
contribution are directly discarded in these methods [19,20]. We argued that these filters carry 
necessary information of the learned model. As can be seen in Fig. 1, when discarding those 
small filters with different pruning ratios, there is a distinct accuracy drop between those 
pruned models and the original one. The experiment intuitively indicates that a filter, even 
with small contribution, still has a non-negligible effect on the model accuracy. Therefore, 
discarding the filters with small contribution directly may not be the optimal way, it leads to a 
lot of information waste. 

In addition, for structured pruning, a pruned model was fine-tuned by Li et al. [1] only 
obtained comparable or worse performance comparing with training the model with random 
initialized weights. The parameters of the pruned filter have few contribution for the final 
performance comparing to the random initialized ones. In the procedure of Li et al. [1], instead 
of exploring which contribution of small filters has, these filters are discarded directly. This is 
a general way in model pruning. 

Is there an efficient way to maximally utilize those small norm filters in the model 
pruning algorithm? The answer is yes. In this paper, we propose Filter Contribution Recycle  
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Fig. 1.  Accuracies on ImageNet2012 dataset of ResNet models with three kinds of depth under 
different filter discarding ratios. All the filters are ranked in descending order according to their 

contribution, which is calculated with LASSO. We then directly discard those filters which ranked last 
with different ratios, for example: 0.0%/ 1%/ 2%/ 4%/ 8%, and evaluate the model without fine-tuning. 
It can be observed that the performance drops obviously for all the models. Especially the accuracy of 
ResNet34 decreases drastically to almost zero with ratio larger than 4%. The reason is that all the filters 
in the 10th convolutional layer1 of the ResNet34 pretrained model are smaller than other convolutional 
layers. Those small filters have the highest priority to be discarded. When setting a high discarding ratio, 

the 10th convolutional layer could not maintain enough capacity to transfer information. All the 
pretrained models are downloaded from Pytorch website2. 

 
(FCR), a novel effective structured pruning approach, to address the fore-mentioned problem. 
FCR first collects contribution from all the droppable filters, and then reassembles those 
contribution to obtain a mixed contribution collector. Contribution contained by the collector 
is then assigned to part of the preserved filters. Through collecting and assigning, FCR 
establishes a contribution recycle from the droppable filters to the preserved ones. To achieve 
the target FLOPs, FCR also adopts a weight decay strategy for all the droppable filters. When 
the contribution of a droppable filter is less than a specified threshold, it will be discarded. 

Our main contributions are summarized as follows:  
1) We propose Filter Contribution Recycle (FCR), a novel structured model pruning 

method, with the motivation of reusing small norm filters to avoid filter contribution waste. 
FCR achieves a high-efficiency utilization of the droppable filters, which will not be discarded 
until not valuable at all. FCR is also flexible to be combined with other different pruning 
criterions. 

2) FCR establishes an implicit connection between all the droppable filters and each 
top-ranking preserved filter. The connection makes the top-ranking preserved filters to inherit 
more contribution to become richer than before. Meanwhile, we validate that the parameters of 
the discarded filters are important for structured pruning. To get a better effectiveness, a 
pruning method could adopt an extra method like FCR to maximally utilize parameters against 
random initialized parameters for the pruned model. 

3) Extensive experiments show that our approach achieves a superior performance 
comparing with other methods under the same or even more FLOPs reduction. 

 
1 The layer name layer2.0.downsample.0.weight in ResNet34 
2 https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 
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2. Related Works 
In this section, we discuss the related model pruning algorithms. According to different 
pruning strategies, model pruning approaches could be split into two categories: unstructured 
pruning and structured pruning. 

Unstructured Pruning. The unstructured pruning algorithm pushes weights in the 
feature map to zero. The architecture of the sparse model actually is not modified. Those 
zeroed weights are dispersed in different feature maps, and the number of the zeroed weights 
in each feature map are generally not the same. [10] specified a pruning threshold to filter the 
small weight which is less than the threshold. [18] proposed a sparse momentum algorithm to 
train the CNN model efficiently. The algorithm relies on identifying weights in a layer, and 
redistributing and growing them across layers. Based on connection sensitivity, [21] 
introduced a saliency criterion to identify important connections in the network. [22] presented 
a systematic weight pruning approach which formulates the weight pruning problem as a 
non-convex optimization problem. In [22], more weights are set to zero to obtain a high 
sparsity ratio, but the inference time of the pruned model is generally approximate to that of 
the original one. The proposed approach in [22] cannot reach the theoretical inference time. 
Therefore, the memory cost and the inference time are not effective decrease. 

Structured Pruning. To effectively reduce the inference time and the memory cost, the 
structured pruning algorithm zeros out part of filters in a convolutional layer. Those zeroed out 
filters generally has few contribution for the original model. To distinguish less contribution 
filters, different pruning criterions are used to estimate the importance of the filters. [11] 
dynamically pruned the filters with small L2-norm, and enabled the pruned filters to be 
updated when training the model after pruning. [19] proposed an iterative two-step algorithm 
to prune efficiently in each layer by a LASSO regression based on channel selection and least 
square reconstruction. [23] used a meta learning approach to prune channels automatically for 
very deep neural networks. [24] combined the filter learning with filter selection for model 
compression. [25] introduced a greedy algorithm to conduct channel selection and parameter 
optimization in an iterative way. [26] pruned unimportant filters to simultaneously accelerate 
and compress CNN models, in which, whether a filter needs to prune depends on the outputs of 
its next layer not its own layer. Li et al. [1] observed that the parameters of the pruned filter 
have few contribution for the final performance, and that a pruned model was fine-tuned only 
obtained comparable or worse performance comparing with training the model with random 
initialized weights.  

3. Methodology 

3.1 Preliminaries 
For simplicity, we assume that a neural network has L layers, and the parameter of the lth 
convolutional layer Cl can be represented as 1× × ×l l l ln n k klW −∈R , where kl is the kernel size, 
and nl is the number of filters in Cl. In this way, we can use 1× ×l l ln k kl

iW −∈R  as the parameter 
of the i th filter in Cl. In the filter pruning stage, we can divide all the convolutional filters W in 
the network into two subsets, i.e., the discarded filter subset and the preserved filter subset, 
denoted as D  and P , respectively.  

Given a set of training examples 1{( , )}M
m m mx y ==X = , where mx  is the m th input and 

my  is the corresponding label, the objective of pruning is to maximally inherit the 
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performance (e.g. accuracy) of the original neural network with minimum filters P , which 
can be formulated as: 

( ; ) ( ; ) ,min W W− <<
P

L X L P X P                                                 (1) 

where L  is the loss function (e.g. cross-entropy loss). P  starts with the whole set of 
parameters of W , and we iteratively identify and remove the small contribution filters until 
reaching the best trade-off between computation and accuracy. 

3.2 Filter Divide Criterion 
To achieve the target FLOPs with structured pruning, we should discard part of filters 
(convolutional kernels) in each convolutional layer. In our experiments, a filter could be 
discarded without waste its contribution if its LASSO value is less than a specific threshold 
T  (e.g. 41 e−×  or lower), and the accuracy only slightly decrease. The filter discard criterion 
can be formulated as: 

{ }
{ }

l
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w
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                                                        (2) 

where l
jw  denotes the j th filter in the l th convolutional layer in a neural network. The 

operation l
j Lasso

w  is used to calculate the contribution of the filter l
jw . 

Generally, there are some innately dead filters in a well trained neural network. Even if 
discarding all the dead filters, there is not enough to reach the target FLOPs.  We should 
discard more filters in the preserved filter subset. The LASSO values of all the filters in the 
preserved subset are greater than the threshold T , in which, there are a part of LASSO values 
are close to T , and the corresponding filters are more likely to be discarded. These discarded 
filters can be called droppable filters. In our method, we define the last 10% filters in preserved 
subset belong to the droppable filter subset U  by the contribution rank. Then, a new subset 
named droppable filter set U  is split from P . Thus, W could be denoted as: { D , U , P }. 

3.3 Motivation 
According to the filter divide criterion, the filters in a neural network can be divided into three 
groups. Though the filters in the droppable subset have few contribution, their effect cannot be 
ignored. The reason is analyzed in Fig. 1. Discarding the small contribution filter would 
degrade the effectiveness of the neural network quickly. We want to find a way to recycle the 
contribution of the droppable filter, and to enhance the performance of the pruned model or 
inherit more information from the original model. This is the motivation of this paper (Fig. 2), 
and the overall architecture of FCR method is described in Algorithm 1. 

3.4 Filter Contribution Recycle 
For simplicity, we take the l th convolutional layer without bias as our example layer, which 
has l

nC  filters. The parameter of this layer can be denoted as: { , [1, ]}l l
k nW w k C= ∈ , where 
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Fig. 2. Comparison of different pruning algorithms. (Top) The traditional model pruning. (Bottom) 

Model pruning with filter contribution recycle. The gray, yellow and red box donates the initial, 
optimized and fine-tuned convolutional filters, respectively. The blue box represents contribution 

collector. The green box represents optimized filter which has received contribution from the 
contribution collector (This figure is best viewed in color). 

 
Algorithm 1: Algorithm Description of FCR 
Input: Train data X, pretrained parameter: { , 0 }iW w i n= ≤ ≤ , target FLOPs: flopsT ,  

          discard threshold: T , calculate FLOPS function: flopsF  
Output: The best pruned model and its parameters *

bestW  
1   for  epoch=1; epoch<epochmax; epoch=epoch+1  do 
2 Update the parameter W based on X; 
3 Calculate the LASSO value for each filter ( | | , 0i Lassow i n≤ ≤ ) and rank total filters; 
4 Divide out droppable filters and collect contribution collector C with (4); 
5 Assign the contribution collector C to each top preserved filter by contribution rank with (5); 
6 Decay total droppable filters with (6); 
7 for i=1; i<n; i++  do 
8    if | |i Lassow < T  then 
9       Zero the filter iw ; 
10    end 
11 end 
12 if ( )flops flopsF W T<   then 
13   Break; 
14 end 
15  end 
16  Obtain the pruned model with parameters W* from W; 
17  Fine-tuning pruned model with X to get the best pruned model *

bestW . 

 

kw  represents the k th filter in lW . Because the discarded filter subset D  has no contribution 

to the neural network, we focus on other two subsets. The parameter lW  can be simplified to 
the formulation: 
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{ }{ }, { },  
d p

pl u l
k u p nkW w w k k C= + ≤U P                                             (3) 

where uk  and pk  are the corresponding number of filters in the droppable filter subset U  
and the preserved filter subset P , respectively. 

Filter contribution collector. The general pruning method discards the filters with small 
contribution directly. This way wastes the information of the droppable filters. In order to 
avoid this, we define a filter contribution collector C to collect the filter contribution for the 
droppable subset in each convolutional layer. Then C can be formulated as: 

1
,  

ui k
u
i

i
wα

≤

=
= ∑C                                                                (4) 

. . [0,1), u
ks t wα ∈ ∈U= 

where α  is the filter contribution collecting rate, which controls the contribution shared 
volume for each droppable filter. We will discuss the impact of α  to the model pruning in 
Subsection 4.4. The collector is a contribution inheritor, and it also is a contribution carrier of 
the droppable filters. 

Filter contribution assignment. Training a neural network is a dynamic procedure, and 
the filter parameters are updated by the optimizer. According to the filter divide criterion, the 
status of a filter is not constant, and it has a probability to switch its group between the 
droppable subset and the preserved one. The droppable filters are probably updated near the 
boundary of the group divide, they are almost impossible to reach the top of the filter 
contribution rank. The top-ranking preserved filters have certain magnitude advantages 
against the droppable ones. Therefore, the top-ranking preserved filters are the best receivers 
to inherit the contribution from the collector. The procedure of the filter contribution 
assignment can be formulated as: 

1

1

1
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u
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iter i
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w w
top
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top

α

+

≤

=
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                                                (5) 

. . , , [1, ]p u
iter iter n ps t w w top k∈ ∈ ∈P U  

where p
iterw  represents a top-ranking preserved filter, iter denotes the training iteration, ntop  

is the number of the top-ranking preserved filters. To keep the model training stable, we divide 
C into ntop  parts averagely, and then assign them to each top-ranking preserved filter. 

Droppable filter decay strategy. To achieve the target of FLOPs reduction quickly, we 
define a filter parameter decay strategy for the droppable filters.  The proposed strategy can be 
formulated as: 

1 ) .,(1 .u u u
iter iter iterw w s t wα+ = − ∈U                                           (6) 

where u
iterw  represents a droppable filter. While the droppable filters share α  percent 

contribution, it decays the corresponding contribution to accelerate the speed of model pruning. 
The proposed strategy decays the magnitudes of the droppable filters iteratively to reach the 
target FLOPs reduction. 
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3.5 Discussion 
The filter contribution recycle (FCR) not only achieves the contribution reutilization for the 
droppable filters, but also builds an implicit connection between all the droppable filters and 
each top-ranking preserved filter. When the model FLOPs is decreasing, the top-ranking 
preserved filters inherit more contribution to become richer than before, and the droppable 
filters continuously sharing contribution until they are useless. It is a mutually beneficial 
approach for all filters. 

4. Experiments 
To explore the performance of the proposed FCR, we evaluate it on two datasets including 
CIFAR-10 and ImageNet2012 with a variety of network architectures. Both the two datasets 
are widely used for classification tasks. FCR is an independent module, which could be 
combined with different filter contribution criterions (e.g. LASSO, L2-norm and 
Taylor-expansion). So we validate the effectiveness of FCR module combined with different 
criterions. In addition, we analyze the effectiveness of the filter contribution collecting rate 
α . 

4.1 Implementation details 
Pruning and Fine-tuning Stage. Our method starts with a high computation cost and well 
accuracy pretrained model. The overall training process is divided into two stages: the pruning 
stage and the fine-tuning one. In the pruning stage, according to the filter contribution criterion, 
the pretrained model discards the small norm filters iteratively in each convolutional layer. 
When the model has discarded enough filters to achieve the target FLOPs, we fine-tune the 
pruned model until the best accuracy is obtained. 

Minimum Preserved Filter Rate Strategy. In general, there are different distributions of 
values among convolutional layers. For example, in the official pretrained model of ResNet34, 
the values of the 10th convolutional layer are obviously less than other layers. When we 
specify a large pruning rate, the 10th convolutional layer has the highest priority to be 
discarded. If the filters in the layer are discarded excessively, the remaining ones may not have 
enough capacity to transfer the data information to result in a poor effectiveness. Therefore, 
we set a minimum preserved filter rate for each layer to avoid excessive pruning. The 
preserved filter rate is an empirical value. In our experiments, if the preserved filter rate is set 
too small (less than 10%), the number of the preserved filters could not maintain the accuracy 
of the network in the pruning phase, which damaged the expression ability of the network. On 
the other hand, if the preserved filter rate with a larger value (more than 25%), there are some 
redundant filters to be preserved. To find the minimum number of filters is the purpose of 
model pruning. Therefore, the preserved filter rate is set to 15% in our approach. 

FLOPs Computation for Shortcut. In the ResNet architecture, there are lots of shortcut 
connections. We follow the equation (8) in [11] to confirm the output shape to calculate 
FLOPs. 

4.2 Results on CIFAR-10 
CIFAR-10 is a small-scale dataset which has 50,000 training images and 10,000 testing 
images in 10 classes. We evaluate our method on CIFAR-10 with ResNet of two different 
depths (56/110). We set the parameter α  in equation (4) to 0.1. In the pruning stage, the 
learning rate is 0.01. SGD optimizer is used in our experiments. When the pruned model 
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reaches the target FLOPs, we fine-tune the model with the learning rate 0.01 and divide it by 
10 at the fixed epoch (e.g., 60, 90, 120, 150). All the training experiments are conducted on 
one Tesla V100 GPU with a batch size of 512. We pad the input data boundaries with 4 zero 
pixels as data augmentation. 

To evaluate the effectiveness of the proposed method, we reduce 55.0% and 60.0% 
FLOPs on ResNet56 and ResNet110. The results are shown in Table 1. From Table 1, we can 
see that for ResNet56, FCR achieves more FLOPs reduction than FPGM [20], and the Pruned 
Top1 accuracy of our pruned model exceeds the model in [20] by 0.15%. For almost 60.0% 
FLOPs reduction, our method achieves much smaller accuracy decrease comparing with [9]. 
For ResNet110, to achieve the same accuracy on the pruned model, SASL [29] just reduces 
51.7% FLOPs, but our method can reduce 54.9% FLOPs. These results on CIFAR-10 show 
that our method can achieve higher FLOPs reduction and maintain competitive performance 
against other methods. 
 

Table 1. Pruning results of ResNet-56/110 on CIFAR-10 

Depth Method Base 
Top1(%) 

Pruned 
Top1(%) Top1↓ (%) FLOPs(1e8) FLOPs↓ (%) 

56 

PFEC [27] 93.04 93.06   -0.02 0.91 27.6 
GAL [9] 93.26   93.38 -0.12 0.78 37.6 
CP [19] 92.80  91.80 1.0 - 50.0 

HRank [8] 93.26  93.17 0.09 0.63 50.0 
FPGM [20] 93.59  93.49 -0.1 0.59 52.6 

Ours 93.56 93.64 -0.08 0.57 55.1 
GAL [9] 93.26  91.58 1.98 0.50 60.2 

Ours 93.56  93.42 0.14 0.50 60.4 

110 

PFEC [27] 93.53  93.30 0.23 1.55 38.6 
GAL [9] 93.50  92.74 0.76 1.30 48.5 

SASL [29] 93.83  93.99 -0.16 - 51.7 
FPGM [20] 93.68  93.74 -0.16 1.21 52.3 

Ours 93.75  93.99 -0.24 1.14 54.9 
HRank [8] 93.50  93.36 0.14 1.06 58.2 

Ours 93.75   93.91 -0.16 1.01 60.0 
 

4.3 Results on ImageNet 
ImageNet2012 dataset is a large-scale dataset which contains 1.28 million training images and 
50,000 validation images in 1,000 classes. We evaluate our method on ImageNet2012 with 
ResNet of three different depths (18/34/50). We set the parameter α  in equation (4) to 0.1. In 
the pruning stage, the learning rate is 0.01. SGD optimizer is used in our experiments. When 
the pruned model reaches the target FLOPs, the learning rate starts from 0.01 and is divided by 
10 at the fixed epoch (e.g. 45, 75, 105). All the training experiments are conducted on four 
Tesla V100 GPUs with a batch size of 512. 

The results are shown in Table 2. In Table 2, we can observe that for ResNet18, our 
method obtains 68.72% top1 accuracy with 42.0% FLOPs reduction. Compared to FPGM [20], 
the accuracy of our method exceeds 0.38% in the similar FLOPs reduction. Our method gets 
68.28% top1 accuracy with 51.0% FLOPs reduction. The top1 accuracy of FBS [30] decreases 
2.44% around 50.0% FLOPs reduction, while that of our method only decreases 1.48%. For 
ResNet32, comparing with SFP [11], our method obtains a better result around 41.0% FLOPs. 
Meanwhile, our method reduces FLOPs 45.0% to obtain much smaller top1 accuracy decrease 
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against the pretrained model. For ResNet50, under the similar 56.0% FLOPs reduction, the 
top1 accuracy of our method is 74.88%, which exceeds 2.19% compare with that of TRP [34]. 
From Table 2, we can see that the results of our method can obtain a better performance 
against other methods. 
 
Table 2. Pruning results of ResNet18/34/50 on ImageNet2012 dataset. SFP-w/o-FT[11] indicates the 

SFP prune method without pretrained model in [11] 

Depth Method Base 
Top1(%) 

Pruned 
Top1(%) 

Base 
Top5(%) 

Pruned 
Top5(%) 

Top1↓  
(%) 

Top5↓  
(%) 

FLOPs↓  
(%) 

18 

FPGM [20] 70.28  68.34 89.63 88.53 1.94 1.10 41.8 
Ours 69.76  68.72 89.08 88.44 1.04 0.42 42.0 

DCP [25] 69.21  67.25 88.86 87.60 1.96 1.26 46.0 
FBS [30] 70.71  68.27 89.68 88.22 2.44 1.46 49.5 

Ours 69.76  68.28 89.08 88.05 1.48 1.03 51.0 

34 

PFEC [27] 73.23    72.17 - - 1.06 - 24.2 
SFP-w/o-FT[11] 73.92  71.83 91.62 90.33 2.09 1.29 41.1 

Ours 73.31     72.32 91.42 90.69 0.99 0.73 41.7 
Ours 73.31  72.27 91.42 90.72 1.04 0.70 45.0 

50 

SFP [8] 76.15  62.14 92.87 84.06 14.01 8.27 41.8 
HRank [31] 76.15  74.98 92.87 92.33 1.17 0.53 43.8 

Taylor-FO [32] 76.18 74.50 - - 1.68 - 45.0 
Ours 76.13  75.37 92.86 92.51 0.76 0.35 45.0 

LFC [20] 75.30  73.40 92.20 91.40 1.90 0.8 50.0 
FPGM [13] 76.15  74.83 92.87 92.32 1.32 0.55 53.5 

GAL [9] 76.15  71.80 92.87 90.82 4.35 2.05 55.0 
C-SGD [33] 75.33  74.54 92.56 92.09 0.79 0.47 55.8 
ThiNet [26] 75.30  72.03 92.20 90.99 3.27 1.21 55.8 
TRP [34] 75.90  72.69 92.70 91.41 3.21 1.49 56.5 

Ours 76.13  74.88 92.86 92.26 1.25 0.6 56.7 
GDP [35] 76.15  70.93 92.30 90.14 5.22 2.16 61.6 
HRank [8] 76.15  71.98 92.87 91.01 4.17 1.86 62.1 

Ours 76.13  73.42 92.86 91.49 2.71 1.37 72.6 
 

4.4 Impact of filter contribution collecting Rate 
The filter contribution collecting rate α  in equation (4) is a critical parameter for our 

method, it controls the contribution shared volume. To explore the impact of α , we set 
different values (e.g., 0.01/0.05/0.1/0.5) for it on ImageNet2012 with ResNet18. And the 
experiments are conducted with 60.0% FLOPs reduction. The experimental results of the 
pruning stage and the fine-tuning one are shown in Fig. 3 and Fig. 4, respectively. 

In Fig. 3, it is obvious that the pruning speed and accuracy are largely different among 
different collecting rates. In our method, the parameters of a network are updated not only by 
the SGD optimizer, but also by the FCR module. For a larger collecting rate (e.g. 0.5), the filter 
parameters could obtain greater update volume than other smaller collecting rates, but the 
accuracy is worse than others. This is because a larger collecting rate disturbs the balance 
among different filter groups and makes the training process unstable to result in poor 
accuracy in the pruning stage.  To achieve the target FLOPs reduction, the time consumed by 
the smaller collecting rate (e.g. 0.01) is several times compared with those used by other 
collecting rates. The FCR method with a smaller collecting rate weakens the contribution 
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Fig. 3.  The curve for model pruning stage with different filter collecting rates α  in equation (4). The 

lowest point for each curve is the ending to achieve the target FLOPs reduction. 
 

 
Fig. 4.  The last 35 epochs validation accuracy in fine-tuning stage for different filter collecting rates. 
 
transformation among the filters, and it actually becomes an enhanced weight decay module. 
In the fine-tuning stage, the intermediate rates 0.1 and 0.05 both take an advantage in accuracy. 
The accuracy advantage benefits from the proper collecting rate in the pruning stage, which 
purpose is to find the most valuable parameters and combination to inherit the contribution 
from the original model. 

In addition, in the pruning stage, the rate of 0.01 achieves almost accuracy comparing 
with 0.1 and 0.05, but it is the lowest one in the fine-tune stage. The obvious gap results from 
the insufficient transformation of the filter contribution. Meanwhile, the gap shows that 
although the pruned model can maintain a competitive performance in the pruning stage, the 
remaining parameters and combinations are not the best ones and cannot achieve a best 
accuracy. On the other hand, the FCR module not only inherits massive effective filter 
contribution from the pretrained model, but also finds the optimal architecture among variety 
filter connections. To sum up, the experimental results show that the FCR module is useful for 
model pruning. 
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4.5 Combine with different contribution criterions 
The proposed FCR is a flexible module, which can combine with different pruning 

criterions to build different pruning methods. To explore the composability of FCR, we 
combine FCR with LASSO, L2-norm, Taylor-expansion respectively to analyze their 
accuracy on ImageNet2012 using ResNet34. All the training parameters and training 
strategies are the same. The target FLOPs reduction is 50.1%. The experimental result is 
shown in Fig. 5, where we use lasso, l2 and taylor_fo to denote LASSO, L2-norm, and 
Taylor-expansion, respectively. The final accuracy is shown in Table 3. From Table 3, we can 
see that FCR combines with the LASSO criterion has a slight advantage to obtain the best 
accuracy. From Fig. 5, it is clear that FCR can achieve a competitive performance combines 
with different criterions, which is a superior auxiliary module in the pruning domain. 
 

 
Fig. 5.  Comparison of different filter contribution criterions with the FCR method. 

 
Table 3. The pruning results of the FCR module combines with different criterions 

Criterion Pruned 
Top1(%) 

Pruned 
Top5(%) Top1↓ (%) Top5↓ (%) 

l2 71.71  90.38   1.60 1.04 
taylor-fo 71.74  90.57 1.57 0.85 

lasso 71.84  90.50 1.47 0.92 
 

4.6 Is weight useful for model pruning? 
Comparing with training a pruned model with random initialized weights, fine-tuning a 
pruned model only obtains comparable or worse accuracy [1]. Li et al. [1] argued that the 
weights of the pruned model could not improve the accuracy of the model, and that the 
architecture of the pruned model is more important than the pruned weights. In the pruning 
phase of the model in [1], the small norm filters are discarded directly, which results in a waste 
of filter contribution. This is a general method in the field of model pruning. We point out that 
the model architecture and the parameters are both useful for the pruned model. The goal of 
the model pruning is to find an optimal architecture and a minimal filter set to inherit filter 
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contribution from the original model. The proposed FCR method is effective to improve the 
accuracy of the pruned model by recycling the contribution of the discarded filters. We 
compare the pruning results of Li et al. [1], Huang et al. [36] and the proposed FCR on 
ImageNet2012 with ResNet50 in Table 4, where we use Rethink and SSS to denote the 
methods used in [1] and [36], respectively. From Table 4, the accuracy of the proposed FCR is 
higher than those of Rethink and SSS in the similar FLOPs reduction. We concluded that, a 
method with the parameter reutilization, like the proposed FCR, can achieve better accuracy 
than those without the recycle strategy. And the comparison results implicitly demonstrate that 
the contribution of the parameters in the pruning stage cannot be ignored for the final 
effectiveness of the model. 
 

Table 4. The pruning results of SSS [36], Rethink [1] and the proposed FCR on Imagenet with 
ResNet50 

Depth Method Base 
Top1(%) 

Pruned 
Top1(%) Top1↓ (%) FLOPs (1e9) 

50 

SSS [36] 76.12  75.44   0.68 3.473 
Rethink [1] 76.12  76.17 -0.05 3.473 

Proposed FCR 76.13  75.97 0.15 3.403 
SSS [36] 76.12  74.18 1.94 2.818 

Rethink [1] 76.12  74.67 1.45 2.818 
Proposed FCR 76.13  75.37 0.76 2.250 

SSS [36] 76.12  71.82 4.30 2.329 
Rethink [1] 76.12  73.41 2.71 2.329 

Proposed FCR 76.13  74.88 1.25 1.74 
 

5. Conclusion and Future Work 
In this paper, we propose a novel filter contribution recycle (FCR) for filter pruning. Different 
from the existing methods, FCR designs a contribution collector to inherit contribution from 
the droppable filters, and assigns the collected contribution to the preserved filters which have 
higher probability to survive. FCR can effectively avoid the contribution waste of the small 
norm filters. In addition, FCR constructs a filter decay strategy for the droppable filters to 
discard it. FCR achieves a superior performance compared with the state-of-the-art pruning 
methods. In the future, we plan to work on how to design an auxiliary post-processing method 
after the pruning stage, which can enhance the performance of the pruned model further with 
the discarded parameters. 
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