• Title/Summary/Keyword: waste liquid

Search Result 583, Processing Time 0.23 seconds

Esterification of the Soybean Oil and Waste Vegetable Oil by Solid Catalysts (고체 촉매를 이용한 대두유와 폐식용유의 에스테르화)

  • Sin, Yong Seop
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.79-87
    • /
    • 2004
  • Esterification of soybean oil with methanol was investigated. First of all, liquid-liquid equilibriums for systems of soybean oil and methanol were measured at temperatures ranging from 40 to 65$^{\circ}C$. Profiles of conversion of soybean oil with time were determined from the glycerine content in reaction mixtures for the different kinds of catalysts, such as NaOH, CaO, Ca(OH)$_2$, MgO, Mg(OH)$_2$, and Ba(OH)$_2$. The effects of dose of catalyst, cosolvent and reaction temperature on final conversion were examined. Esterification of waste vegetable oil with methanol was investigated and compared to the case of soybean oil. Solubility of methanol in soybean oil was substantially greater than that of soybean oil in methanol. When the esterification reaction of soybean oil was catalyzed by solid catalyst, final conversion was strongly dependent on the alkalinity of the solid catalyst, and increased with the alkalinity of the metal. Hydroxides from the alkali metals were more effective than oxides. When Ca(OH)$_2$ was used for the esterification catalyst, maximum value of final conversion was measured at dose of 4%. When CHCl$_3$ as a cosolvent, was added into the reaction mixture of soybean oil which catalyzed by Ba(OH)$_2$, maximum value of final conversion was appeared at dose of 3%. When waste vegetable oil was catalyzed by NaOH and solid catalysts, high final conversion, over 90%, and fast reaction rate were obtained.

Evaluation of the Water Purification Efficiency of Waste LCD Glass Media by Using Foaming Technology (발포기술을 이용한 폐 LCD유리 여재의 수질정화능력 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.369-376
    • /
    • 2010
  • The purpose of this study is to reprocess Waste-LCD(Liquid Crystal Display), to widely increase specific surface-area by foaming agent in the process of reprocessing and to use as a substrate of water treatment which is increased the ability of biological treatment, as well as to control non-point source pollutants produced by surface run off during rainfall with using this substrate, and to improve water quality of public watershed as developing substrate for water treatment to be able to purify second treated water which is exhausted at the wastewater treatment plant. The average removal efficiency of Waste-LCD that using the foaming technology was SS 71.2%, BOD 55.7%, COD 58.4%, T-N 29.5% and T-P was 50.3%. Almost Media, early stage showed low removal efficiency of SS and BOD. However, it became high when the microorganism adhered the Media. The variation of SS removal efficiency was high by inflow concentration of SS. The reason for the Media 4 showed high SS removal efficiency is that it has wide specific surface-area, and also it has a pore. All in all, it shows floating matter treatment ability not only inside but it also works outside of the substrate.

Feasible waste liquid treatment from electroless nickel-plating by intense magnetic field of HTS bulk magnets

  • Oka, T.;Furusawa, M.;Sudo, K.;Dadiel, L.;Sakai, N.;Seki, H.;Miryala, M.;Murakami, M.;Nakano, T.;Ooizumi, M.;Yokoyama, K.;Tsujimura, M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.37-40
    • /
    • 2021
  • Nickel (Ni) is a kind of the rare earth resources. Since Ni-containing waste is drained after several plating operations in the factories, the effective recycling technique has been expected to be introduced. An actual magnetic separation technique using HTS bulk magnet generating the strong magnetic field has succeeded in collecting the paramagnetic slurry containing Ni-sulphate coarse crystals which were fabricated from the Ni-plating waste. The Ni compound in the collected slurry was identified as NiSO4/6H2O, showing slight differences in the particle size and magnetic susceptibility between the samples attracted and not-attract to the magnetic pole. This preferential extraction suggests us a novel recycling method of Ni resource because the compound is capable of recycling back to the plating processes as a raw material.

Development of Perfect Recycling Equipment for Sea Fish Waste (고속건조기에 의한 수산폐기물 완전처리장치 개발)

  • Han, Doo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.614-619
    • /
    • 2010
  • We proposed perfect recycling method of sea waste. The sea waste(rotten sea fish, rotten shell fish etc.) have bad smell and generate waste water, so these waste materials must be treated quickly. If we use speedy dryer, these sea waste can be changed to useful feed and liquid composts. Also this study relates to a method for drying a variety of untreated waste materials in a hermetically sealed state, and subsequently carbonizing the dried waste materials under a reduced pressure, thereby achieving a more stable and economical treatment for the waste materials, and an apparatus for performing the method. This effects of preventing generation of contaminants and environmental pollution while reducing fuel costs, and a carbide, obtained via the drying and carbonization of the waste material, are available into feed for poultry. The condensate water can be used to deodorants.

Analysis for Valuable Materials Disassembled from 40- and 42-inched Waste LCDs (Liquid Crystal Displays) (폐 중형 (40인치와 42인치) LCD (Liquid Crystal Display) 제품 해체 후 분리된 유가자원에 대한 분석)

  • Park, Hun-Su;Kim, Yong;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.42-48
    • /
    • 2016
  • Although the generation of waste flat panel displays in Korea is expected to exceed one million sets in 2016, a comprehensive recycling technology has not yet been developed for effective recovery of valuable materials from the wastes, rendering to outshine the national prestige as a global leader in display industries. The overall aim of this study was to analyze the statistical data of various valuable materials and their ratio after dismantling 40-inch and 42-inch sized waste LCDs. The analysis results showed that plastic portion of the wastes was about 22% and the portion of PCB (Print Circuit Board) part was about 9% by weight whereas panel part was about 34% and leftovers including metals totalled about 35% by weight. Based on the analytical results, a higher value recycling process could be proposed with advanced material separation techniques.

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa;Seong-Yun Kim;Masahiko Kubota;Hao Wu;Sou Watanabe;Tatsuya Ito;Ryuji Nagaishi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.812-818
    • /
    • 2024
  • The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.