• 제목/요약/키워드: waste incinerator

Search Result 225, Processing Time 0.02 seconds

A Study on the Waste Incinerator Location Problem in Seoul (서울시 쓰레기 소각장 입지에 관한 연구)

  • 이금숙;이희연
    • Journal of the Korean Regional Science Association
    • /
    • v.14 no.1
    • /
    • pp.91-107
    • /
    • 1998
  • Waste disposal problem is one of the most important social welfare indicators in urban area, because the volume of waste generated from urban area is remarkable. So far most waste of Seoul has been disposed at landfills. However, this landifill disposal method is confronted with several difficulties in recent. As public concern on environmental problem increases and autonomy system is settled down, local community people of the landfills refuse to receive the waste produced other places any more. It brought reginal confliction problem between waste sending and receiving by refusing to accept waste from certain region. Furthermore, it is difficult to find another place to fill up the waste, while the existing landfiis is reached at the limit in the near future. In terms of environmental aspects landfill method is not the best way to dispose waste. It contaminates the soil and ground/underground water by leaking water containing many serious pollutants as well as offensive oder. In terms of equity, this waste disposal method is not fair. Environmental pollution causes damage to residence near to the landfills, while the waste produced other places. In order to satisfy the equity aspect, the waste generated a region should be disposed within the region. Incineration of Waste has been provided as the alternative. Government plans to construct waste incinerator in every anatomy, so the waste produced by local community is disposed within their local autonomous area. However, the location decision is not easy, since waste incinerator is one of the facilities to the community people. We can not apply the existing location models for this problem, because they show strong NIMBY phenomenon for the location. The location of waste incinerator should be determined very carefully with consideration of various location factors and criteria. This study proposes a methodology for determining the location of the waste incinerators by utilizing GIS, which is a power research tool for location decision where various geographical factors related. We drive the location factors which should be considered in the determination of waste incinerators. They involve environmental, socio-economic, and institutional factors. In first, we eliminate the area which is located within the environmental location criteria such as slope, fault line, distance to river, and then eliminate ares which is conflict with the social and institutional criteria.

  • PDF

The Development of Hazardous Waste Compact Dump incinerator for Low Emissions (저공해 compact 유해폐기물 dump 소각기 개발)

  • 전영남;채종성;정오진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.653-663
    • /
    • 2000
  • A lot of hazardous wastes are discharged as by-products of working process by industrial development. Hazardous wastes is physical characteristics of difficult destruction at hight temperature. Numerical simulation and combustion experiment performed of dump incinerator for hazardous waste incineration. For the numerical simulation, the SIMPLEST algorithm was used to ensure rapid converge A K-$\varepsilon$ model was incorporate for the enclosure of turbulence flow. Combustion model was used by ESCRS (extended simple chemically reacting system) model available of CHEMKIN thermodynamic data for the source term of species conservation equation or energy equation. Radiation model is used by six flux model. A parametric screening studies was carried out through numerical simulation and experiment. Residence time and concentration in the incinerator was strongly dependent on the parameters of mixture velocity, mixture equilibrium ratio, surrogate velocity and surrogate equilibrium ratio.

  • PDF

VOLATILE ORGANIC COMPOUNDS MEASUREMENT IN THE BOUNDARY OF WASTE TREATMENT FACILITIES

  • Yim, Bong-Been;Kim, Sun-Tae
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.46-54
    • /
    • 2007
  • Concentrations of the principal volatile organic compounds, such as benzene, toluene, ethylbenzene, m,p,o-xylene, styrene, and chlorobenzene were measured at the solid waste treatment plants classified into four categories; municipal waste incinerator, municipal waste landfill site, industrial waste incinerator and industrial waste landfill site. The average concentration of VOCs in industrial waste treatment facilities was 33.43 ppb and was significantly higher than that measured at municipal waste treatment facilities (4.71 ppb). The average toluene concentrations measured at incinerators (13.05 ppb) were a little higher than those measured at landfill sites (11.54 ppb). The contribution of the waste treatment facilities to the concentration of benzene (0.35 ppb) and o-xylene (0.15 ppb) in the industrial area was relatively small. However, toluene measured in the industrial waste treatment facilities was the most abundant VOCs with the average concentration of 21.37 ppb. As a result of analyses of fingerprint, in cases of IISH and ILUS, a variety of compounds other than major VOCs were detected in high level. On the Pearson correlation analysis, the correlation was generally positive and some pairs of these VOCs were very strongly correlated (correlation coefficient > 0.75).

Combustion Characteristics of Municipal Wastes in Pyrolysis Incinerator (열분해 소각시설에서의 일반폐기물의 연소특성)

  • Park, Myung-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.149-156
    • /
    • 2011
  • In case of domestic pyrolysis dry distillation gassification technology, it stays at the stage of its early introduction and development. Moreover, the companies possessed of this technology are limited to Japan and some countries in Europe, and domestic operative performance of this system is nominal, so there exist a lot of difficulties in securing its basic data. In addition, considering its operation and management, there happens a corrosion of metals by the production of corrosive gases in time of combustion of waste, and there arise a problem of occurrence of low temperature corrosion on exterior casing or gas ducts of a combustion chamber due to the high temperature corrosion around the burner of an incinerator, lowering the durability of an incinerator. Therefore, this study looked at the problems arising in time of incineration by understanding the characteristics of the pyrolysis dry distillation gassification incinerating facility, and did research on the improvement plan for durability of an incinerator for more economic, efficient waste incineration.

An Evaluation Study on Combustion and Thermal Flow Characteristics of G+R Type Incinerator (G+R 타입 소각연소로의 연소 및 열유동 특성평가 연구)

  • Shin, Dong-Hoon;Shin, Dong-Hoon;Baek, Ik-Hyun;Jung, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.111-117
    • /
    • 2003
  • The present study discusses about the combustion and thermal flow characteristics of a G+R type incinerator, which is under construction for MAPO Incineration system, to evaluate the effects of various operating and design parameters. A bed combustion model is developed to simulate the waste bed combustion on the stoker. The effects of waste composition and primary air distribution are estimated. The results of the waste bed combustion model is applied to CFD(computational fluid dynamics) simulation, which simulates the detail of the thermal flow in the combustion chamber. The effects of bypass damper opening ratio, primary air distribution, and secondary air jet configuration are discussed.

  • PDF

The Geotechnical Properties of Municipal Solid Waste Incinerator Fly Ash and Cement Stabilization (도시고형폐기물 소각 비산재의 지반공학적 특성 및 시멘트 안정화에 관한 연구)

  • 조진우;김지용;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.528-535
    • /
    • 2000
  • Solid waste incinerator is expected to become widely used in Korea. The incineration of solid waste produces large quantities of bottom and fly ash, which has been disposed of primary by landfilling. However, as landfills become undesirable other disposal method are being sought. In this study, an experimental research is conducted to determine the geotechnical properties of municipal solid waste incinerator fly ash(MSWIF) in order to evaluate the feasibility of using the material for geotechnical applications. Basic pysicochemical characteristics, moisture-density relationship, strength, permeability, and leaching characteristics are examined. The results of MSWIF are compared to other MSWIF and coal fly ash which are used as construction material. In addition, the effectiveness of cement stabilization is investigated using various mix ratios. The result of stabilized mixes are compared to the unstabilized material. Cement stabilization is found to be very effective in reducing permeability, increasing strength, and immobilizing heavy metals. This results indicate that MSWIF with cement stabilization may be used effectively for geotechnical application.

  • PDF

A Study on Recycling of Waste Polyethylene Film (폐폴리에틸렌 필름의 재활용에 관한 연구)

  • Lee, Hwan-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.182-188
    • /
    • 2008
  • The compounds of recycled polyethylene(PE) and fly-ashes were prepared. Polymers used were sorted PE from mixed plastics of household waste and Low Density Polyethylene(LDPE) and Linear Low Density Polyethylene(LLDPE) recycled from the scrap of packaging film plants. Fly-ashes were from the power plant and from the household waste incinerator. The tensile strength of recycled LDPE and LLDPE compounds decreased and the flexural modulus increased with greater amount of the power plant fly-ash. Anthracite fly-ash gave rise to slightly higher tensile and flexural strength of the LLDPE mixtures than bituminous coal fly-ash presumably due to higher content of unburned carbon. The incinerator fly-ash introduced to household waste PE enhanced both tensile strength and flexural modulus of the compounds. When LDPE and household waste PE were used together, the synergistic effect of incinerator fly-ash to household waste PE was offset by reduced crystallization of LDPE due to the filler particle. The compounds of household waste PE and incinerator fly-ash might be applied to structural materials for such as sewage pipe, which reduces the waste treatment cost and conserve the environment and resources.

An Experimental Study on the Treatment of Waste Ash from the Incinerator by Alkali Soluble Acrylic Copolymer Emulsion (알칼리 용해성 아크릴계 수분산 중합체를 사용한 소각로 비산재의 처리에 관한 실험적 연구)

  • Lee, Hack-Yong;Choi, Sang-Reung;Noh, Jae-Ho;Heo, Hyung-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.111-116
    • /
    • 2010
  • The treatment of heavy metal, in the waste ash from incinerator and mine solid waste, by using alkali-soluble acrylic copolymer emulsion, that is effective in the absorption of heavy metal has been studied. It seemed that alkali soluble acrylic copolymer emulsion was very effective in the absorption of Hg, Pb, Cd and Cu in this test. Also, eco-friendly thixotropic grout, using alkali soluble acrylic copolymer emulsion, that is effective in the absorption of heavy metal, for the recycling of waste ash from incinerator and mine solid waste has been tested. It was observed that waste ash could be used as a raw material of eco-friendly thixotropic grout mortar due to the effectiveness of alkali soluble acrylic copolymer emulsion in the fixation of heavy metals including $Cr^{6+}$ from waste ash in this test.

  • PDF

The Role of (Chloro-) Phenols in the Formation of Polychlorinated Dibenzofurans in Municipal Waste Incinerators

  • Ryu, Jae-Yong;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.9-19
    • /
    • 2007
  • Comparing predicted PCDF isomer patterns with those obtained from a municipal waste incinerator assessed the role of two-phenol condensation pathways in the formation of PCDFs. Complete PCDF homologue and isomer distributions were obtained from a Fluidized Bed Incinerator (FBI). Two-phenol condensation model, dependent only on the distributions of phenols, was developed to predict the PCDF congeners produced from phenol precursors. R-squared values from linear correlations are presented for the dichlorinated through hexa-chlorinated isomer distributions between measured and predicted. They range from 0.00: to 0.1 far the di-chlorinated through hexa-chlorinated isomer sets. Agreement between predicted and measured PCDF isomer distributions was very poor for all homologues. Two-phenol condensation pathways are not likely to be the pre-dominant pathways in the formation of PCDF in a FBI. However, dibenzofuran (DF) is likely to be produced from a condensation of two phenols. This work demonstrates the use of PCDF homologue and isomer patterns for testing PCDF formation mechanism from two-phenol condensation pathways in municipal waste incinerators.

Study on Co-incineration of Municipal Solid Waste and Organic Sludges (도시쓰레기와 유기성 하수 슬러지 혼합소각에 관한 연구)

  • Jurng, Jong-Soo;Chin, Sung-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.238-244
    • /
    • 2005
  • This study performs the pilot-plant experiments to evaluate the effect of the oxygen enrichment on the co-incineration of municipal solid waste and organic sludge from a wastewater treatment facility. The design capacity of the stoker-type incinerator pilot-plant is 150 kg/h. Combustion chamber temperatures were measured as well as the stack gas concentrations, i.e., NOx, CO, and the residual oxygen. The maximum ratio of organic sludge waste to the total waste input is 30%. Also the oxygen-enriched air with 23% of oxygen in supplied air is used for stable combustion. As the co-incineration ratio of the sludge increased up to 30% of the total waste input, the primary and the secondary combustion chamber temperature was decreased $to900^{\circ}C$ (primary combustion chamber), $750^{\circ}C$(secondary combustion chamber), respectively, approximately $200^{\circ}C$ below the incineration temperature of the domestic waste only (primary: $1,100^{\circ}C$, secondary: $950^{\circ}C$). However, if the supplied air was enriched to 22% oxygen content in air, the incinerator temperature was high enough to burn the waste mixture with 30% sludge, which has the heating value of 1,600 kcal/kg.

  • PDF