• Title/Summary/Keyword: waste glass powder

Search Result 58, Processing Time 0.023 seconds

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

Properties of PHC Piles Using TFT-LCD Waste Glass (TFT-LCD 폐유리 사용 고강도 콘크리트 파일의 특성)

  • Lee, Seung-Heun;Lee, Seung-Tae;Min, Kyung-San;Jeon, Sung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.319-320
    • /
    • 2010
  • This Study aimed to investigate fundamental properties of PHC pile using waste TFT-LCD glass powder. Through the present study, waste TFT-LCD glass powder may be taken into consideration for the application of mineral admixture for PHC pile.

  • PDF

High Temperature Properties in Finishing Mortars of Exterior Insulation Finishing System Using Fly Ash and Waste Glass Powder (플라이애시와 폐유리분말을 사용한 외단열용 마감모르타르의 고온 특성)

  • Song, Hun;Shin, Hyeon Uk
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2019
  • Fly ash has different chemical composition depending on the type and quality of flaming coal. Fly ash is classified according to carbon content and particle size. Waste glass powder is manufactured by crushing glass. Exterior Insulation Finish System (EIFS) is generally applied by using poly-styrene foam which is economical and has excellent thermal insulation performance. However, poly-styrene foam has excellent insulation performance, but it is vulnerable to fire, which is becoming a serious problem. In this study, using a fly ash and waste glass powder to produce a finishing mortar at high temperatures. Also, High temperature strength and flame retardant properties were tested according to the cover thickness. From the test result, finishing mortar prepared using fly ash and waste glass powder is due to the improved heat resistance by alkali-activated bonding. However, since the strength decreases at high temperatures, it is necessary to select an appropriate mixing proportion.

Evaluation of Carbonation Characteristic for Concrete using OLED Waste Glass Powder (OLED 페유리 미분말을 혼화재로 활용한 콘크리트의 탄산화 특성 평가)

  • Kim, Jae-Don;Jang, Il-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2020
  • In this study, the carbonation characteristics of concrete according to the mixture of OLED waste glass were evaluated. Replacement capacities of OLED waste glass were 0%, 10%, 20%, and 30% of cement, and they were named OG 0, OG 10, OG 20, and OG 30. As a result of the compressive strength test, OG 0 without replacing OLED waste glass showed high intensity until the 14th. However, the higher the replacement rate of OLED waste glass, the higher the compressive strength of 28 days. In addition, the speed of carbonation was faster with the higher the replacement rate of OLED waste glass, and the accelerated carbonation experiment was about three times faster than the natural carbonation test. In conclusion, the carbonation characteristics of OLED concrete are expected to be positive in terms of atmospheric CO2 absorption.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

Properties of Wollastonite-Reinforced Glass-Ceramics Made from Waste Automobile Glass and Waste Shell

  • Yun, Yeon-Hum;Yoon, Chung-Han;Kim, Chi-Kyun;Hwang, Kyu-Seog
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.54-58
    • /
    • 2004
  • Wollastonite-type glass ceramics were prepared by milling and firing at various temperatures using an automobile waste glass and waste shell as starting materials. Powder mixture ground by disk-type ball mill for 3 hours was pressed into a disk. The pressed specimen was fired at $850^{\circ}C$,$950^{\circ}C$ and $1050^{\circ}C$ for 1 hour in air. From FE-SEM observation, with an increase of the firing temperature from $850^{\circ}C$ to $1050^{\circ}C$, whisker-type phase was grown to about 10 $\mu\textrm{m}$ in length. Specimen fired at $1050^{\circ}C$ showed the formation of well-crystallized whisker-type wollastonite grains and the highest compressive strength.

A Fundamental Study in order to Utilize Waste Glasses Powder as Admixtures of Repair Mortar (폐유리 미분말을 보수모르타르의 혼합재료로 활용하기 위한 기초적 연구)

  • Choi, Yun-Wang;Jung, Moon-Yung;Kang, Hyun-Jin;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.341-344
    • /
    • 2006
  • The waste glasses among plenty of wastes put out lately is limited in recycling and reusing, and the phenomenon hasn't been improved quite much. And besides, the recycling rate shows the 70.1%, relatively low. These waste glasses is currently used for road pavement materials, interior and exterior decorating materials in architecture, road painting meterials, auxiliary lagging materials for heat-retaining, coldness-retaining and soundproofing, and glass bottles. 30% of waste glasses powder is, however, not reused pratically. Therefore, in this research, we operated some tests including flow of mortar mixed with waste glasses powder, setting time, rheology and compressive strength to utilize waste glasses powder put out in the precess of recycling for admixture for repair mortar. As a result, we've found out that we can utilize waste glasses powder for admixture for repair mortar.

  • PDF

Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.325-342
    • /
    • 2014
  • The use of lightweight aggregate (LWA) instead of ordinary aggregate may make lightweight aggregate concrete, which possesses many advantages such as lightweight, lower thermal conductivity, and better fire and seismic resistance. Recently the developments of LWA have been focused on using industrial wastes as raw materials to reduce the use of limited natural resources. In view of this, the intent of this study was to apply Taguchi optimization technique in determining process condition for producing synthetic LWA by incorporating waste thin film transition liquid crystal displays (TFT-LCD) glass powder with reservoir sediments. In the study the waste TFT-LCD glass cullet was used as an additive. It was incorporated with reservoir sediments to produce LWA. Taguchi method with an orthogonal array L16(45) and five controllable 4-level factors (i.e., cullet content, preheat temperature, preheat time, sintering temperature, and sintering time) was adopted. Then, in order to optimize the selected parameters, the analysis of variance method was used to explore the effects of the experimental factors on the performances (particle density, water absorption, bloating ratio, and loss of ignition) of the produced LWA. The results showed that it is possible to produce high performance LWA by incorporating waste TFT-LCD glass cullet with reservoir sediments. Moreover, Taguchi method is a promising approach for optimizing process condition of synthetic LWA using recycled glass cullet and reservoir sediments and it significantly reduces the number of tests.