• Title/Summary/Keyword: waste fuel

Search Result 1,746, Processing Time 0.027 seconds

A Study on Possibility of Bio-coal Manufacturing using High Moisture Agricultural by- Products (고함수율 농업부산물을 이용한 Bio-coal의 가능성에 대한 연구)

  • Kim, Min-Jung;Park, Kyoung-Joo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • The rapid industrial development is facing problem due to energy depletion in Korea. So that, it can be necessary to develop alternative energy sources. Alternative energy like biofuels can be produced by using waste fuel, which is ecofriendly. As we know, the organic waste was banned to dump in landfill and ocean dumping. The most practicable method usually used to reduce organic waste is getting feedstuff or composting, considering the discharge characteristics of agricultural by-products waste treatment were selected. In this study, bio-coal was made using agriculture by product. Biocoal was prepared by adding 50 g of uniformly mixture into reactor and was carbonized at low temperatures 210, 220, and 230℃. The time of reaction was 1, 2 and 3 hours. Bio-coal approximately was similar to the standard of solid fuels. Other characteristics of fuel were also studied. The experiments which were analyzed were moisture content and calorific value, ash, chlorine, sulfur and heavy metals analysis as mercury, cadmium, lead, arsenic, and chromium. As a result, bio-coal 220℃, 2 hours was the optimal conditions while heating.

Development Status for Commercialization of Spent Nuclear Fuel Transportation and Dry Storage System Technology (사용후핵연료 수송/저장시스템 상용화 기술개발 경과)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.271-279
    • /
    • 2018
  • During the seven years from 2009 to 2016, PWR SNF (spent nuclear fuel) transportation and storage systems suitable for domestic conditions were developed by the government to cope with the saturation of wet storage capacity in NPPs. One of the developed systems is a multipurpose metal cask applicable for transportation/storage; the other is a concrete cask dedicated to storage. Efficient cask technologies were secured utilizing the characteristics and experience of relevant industrial, academic and research institutes. Technological independence was also achieved through several patent registrations of research outcomes. To prepare for a rapid increase of demand in the near future, technology transfer of secured patents and technologies to the domestic industry was carried out twice in the years of 2016 and 2017.

Waste Treatment technique for the Resources of Marine Debris(I) - Recycling of marine debris for RDF - (수거된 해양패기물 자원화 기술 개발(I) - 해양패기물의 폐기물 연료화 -)

  • Keel Sang-In;Yun Jin-Han;Choi Yeon-Seok;Kang Chang-Gu;Yu Jeong-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.28-34
    • /
    • 2002
  • The purpose of this study is the RDF process development for the disposal of marine debris, and physical properties of RDF was analyzed for the reliability as a industrial fuel. By the separation of lead from the waste rope and the pelletizing of burning material, marine debris changes to fuel resources. The resource recycling process is effective in the clean treatment of waste and the secure of substitute energy.

  • PDF

Concepts of heat dissipation of a disposal canister and its computational analysis

  • Minseop Kim;Minsoo Lee;Jinseop Kim;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4173-4180
    • /
    • 2023
  • The stability of engineered barriers in high-level radioactive waste disposal systems can be influenced by the decay heat generated by the waste. This study focuses on the thermal analysis of various canister designs to effectively lower the maximum temperature of the engineered barrier. A numerical model was developed and employed to investigate the heat dissipation potential of copper rings placed across the buffer. Various canister designs incorporating copper rings were presented, and numerical analysis was performed to identify the design with the most significant temperature reduction effect. The results confirmed that the temperature of the buffer material was effectively lowered with an increase in the number of copper rings penetrating the buffer. Parametric studies were also conducted to analyze the impact of technical gaps, copper thickness, and collar height on the temperature reduction. The numerical model revealed that the presence of gaps between the components of the engineered barrier significantly increased the buffer temperature. Furthermore, the reduction in buffer temperature varied depending on the location of the gap and collar. The methods proposed in this study for reducing the buffer temperature hold promise for contributing to cost reduction in radioactive waste disposal.

On the Improvement of the Combustibility of Waste Plastics used in Blast Furnace

  • Ban, Bong-Chan;Choi, Jin-Shik;Kim, Dong-Su
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.751-754
    • /
    • 2001
  • A possibility of using waste plastics as a source of secondary fuel in blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. for instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with the decrease of particle size, the combustibility of waste PE could be improved at a given distance from tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at longer distance from tuyere.

  • PDF

DEPTH AND LAYOUT OPTIMIZATIONS OF A RADIOACTIVE WASTE REPOSITORY IN A DISCONTINUOUS ROCK MASS BASED ON A THERMOMECHANICAL MODEL

  • Kim, Jhin-Wung;Koh, Yong-Kwon;Bae, Dae-Seok;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The objective of the present study is the depth and layout optimizations of a single layer, high level radioactive waste repository in a discontinuous rock mass with special joint set arrangements. A single layer repository model, considering variations in the repository depths, pitches, and tunnel spacings, is used to analyze the thermomechanical interaction behavior. It is assumed that the repository is constructed in saturated granite with joints; the PWR spent fuel in a disposal canister is installed in a deposition drift which is then sealed with compacted bentonite; and the backfill material is filled in the repository tunnel. The decay heat generated by the high level radioactive wastes governs the thermomechanical behavior of the near field rock mass of the repository. The temperature and displacement behavior of the repository is influenced more by the pitch variations than the tunnel spacing and repository depth. However, the stress behavior is influenced more by the repository depth variations than the pitch and tunnel spacing. For the final selection of the tunnel spacing, pitch, and repository depth, other aspects such as the nuclide migration through a groundwater flow path, construction costs, operation costs, and so on should be considered.

Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask (국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가)

  • Dho, Ho-seog;Kim, Tae-man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • In general, conventional criticality analysis for spent fuel transport/storage systems have been performed based on the assumption of fresh fuel concerning the potential uncertainties from number density calculations of actinide nuclides and fission products in spent fuel. However, these evaluation methods cause financial losses due to an excessive criticality margin. In order to overcome this disadvantage, many studies have recently been conducted to design and commercialize a transportation and storage cask applied to the Burnup Credit (BUC). This study conducted an assessment to ensure criticality safety for reactor operating parameters, axial burn-up profiles and misload accident conditions, which are the factors that are likely to affect criticality safety when the BUC is applied to the dual-purpose cask under development at the KOrea RADioactive waste agency (KORAD). As a result, it was found that criticality resulting from specific power, changed substantially and relied on conditions of low enrichment and high burn-up. Considering the end effect in the case of high burn-up produced a positive-definite result. In particular, the increment of maximum effective multiplication factors due to misloading was 0.18467, confirming that misload is a factor that must be taken into account when applying the BUC. The results of this study may therefore be utilized as references in developing technologies to apply the BUC to domestic models and operational procedures or preventing any misload accidents during the process of spent fuel loading.

A Study on Japanese Experience to Secure the Interim Storage Facility for Nuclear Spent Fuel (일본의 사용후핵연료 중간저장 시설 확보 경험에 관한 연구 - 아오모리현 무쯔시 사례 -)

  • Kim, Kyung-Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.351-357
    • /
    • 2007
  • The Japanese Government selected Mutsu, Aomori Prefecture as a provisional spent-fuel repository site. This comes as a result of the prefecture's five-year campaign to host the site since 2000. Korea stores spent nuclear fuel within sites of nuclear power plants, and expects the storage capacity to reach its limit by the year 2016. This compels Korea to learn the cases of Japan. Having successfully hosted Gyeongju as a site for low-to-intermediate-level nuclear waste repository, Korea has already learned the potential process of hosting spent fuel storage site. The striking difference between the two countries in the process of hosting the site is that the Korean government had to offer the local city a large amount of subsidy for hosting through competitive citizens' referendum among candidate cities while it was the leadership of the local municipality that enabled the controversial decision in Japan. It is also a distinguishable characteristics of Japan that not a huge subsidy is provided to the local host city. I hope this study offers an idea to Korea's future effort to select a spent-fuel host site.

  • PDF

Numerical Study on Performance Improvement by Changing of Fuel Injection Timing of Common Rail Diesel Engine for using Electric Generation for Waste Engine Remanufacturing (폐엔진 재제조를 위한 발전용 커먼레일 디젤엔진의 연료분사 타이밍 변경을 통한 성능향상에 대한 수치해석 연구)

  • Kim, Seung Chul;Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • The common rail diesel engine used in this study is a remanufactured waste engine. The fuel injection timing of the waste engine is set to be suitable for the operating conditions of the vehicle. However, the engine of a generator is operated at a constant speed and mainly at partial load. Therefore, it is necessary to change the fuel injection timing suitable for the power generation engine, and the cost and the time required for such change must be minimized as much as possible. As a result of the analysis, it was confirmed that the fuel efficiency improves according to the fuel injection timing suitable for the engine for the generator, thereby increasing the performance and fuel efficiency.

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.