• Title/Summary/Keyword: warping torsion

Search Result 56, Processing Time 0.022 seconds

Developing General Beam Finite Elements with Warping Displacement (뒤틀림 변위를 고려한 일반 빔 유한요소의 개발)

  • Yoon, Kyung-Ho;Lee, Phill-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.764-767
    • /
    • 2011
  • 본 논문에서는 유한요소법을 이용하여 임의의 단면을 가지는 빔의 비틀림 문제를 해석 할 수 있는 방법론을 제시하였다. 빔 유한요소에서 연속적인 뒤틀림함수를 얻기 위해 각 절점에서 뒤틀림자유도를 정의한 후 빔의 길이 방향으로 보간하였다. 이러한 방법의 사용은 뒤틀림구속효과와 비선형문제에 쉽게 접근 할 수 있게 한다. 또한, 임의의 단면에 대한 뒤틀림함수는 각 단면에서 St.Venant 방정식을 유한요소법을 통해 수치적으로 계산된다. 단면에서 계산된 해는 3차원 일반 빔 요소의 변위장에 매핑된다. 위와 같은 절차를 통해 개발된 빔 유한요소를 사용하면 임의의 단면을 가진 빔 구조물을 자유/구속 뒤틀림조건에서 비틀림, 굽힘, 신축 변형이 복합적으로 고려하여 해석해 낼 수 있다. 이렇게 해석된 결과를 검증하기 위하여 사각단면과 L단면에서의 결과 값을 고찰하였다.

  • PDF

Aeroelastic Stability Analysis of Hingeless Rotor Blades with Composite Flexures

  • Kim, Seung-Jo;Kim, Ki-Tae;Jung, Sung-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.512-521
    • /
    • 2002
  • The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite flexures in hovering flight has been investigated by using the finite element method. The quasisteady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting on the blade. The governing differential equations of motion undergoing moderately large displacements and rotations are derived using the Hamilton's principle. The flexures used in the present model are composed of two composite plates which are rigidly attached together. The lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines the St. Versant torsion and the Vlasov torsion is developed to describe the twist behavior of the composite flexure. Numerical simulations are carried out to correlate the present results with experimental test data and also to identify the effects of structural couplings of the composite flexures on the aeroelastic stability of the blade. The prediction results agree well with other experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag couplings on the stability behavior of the composite blades are also investigated.

A Study on Analytical Model of Fish-bone Girder Pier (연안역 조립식 경골잔교(Fish-bone Girder Pier)의 해석모델에 관한 연구)

  • Kim, Hwa-Rang;Lim, Nam-Hyoung;Park, Jong-Sup;Yun, Kyung-Min;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6527-6533
    • /
    • 2013
  • A fish-bone girder pier affects torsion severely because of the one girder system. This study was performed to develop an analytical model to analyze and design a fish-bone girder pier properly. This model consisted of a beam element with 7-degrees of freedom considering the warping rigidity. Several beam-column connection conditions were considered. The static load test was performed using a real size specimen. The validity of this model was tested by a comparison of the analytical results with the experimental results. This analytical model is useful for designing the bolt connection of a Spine girder.

Free Torsional Vibration of Linearly Tapered I-Beams (선형(線形) 변단면(變斷面) I-형(型) 보의 비틂진동(振動))

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1013-1021
    • /
    • 1994
  • The stiffness and mass matrices are developed for free torsional vibration analysis in linearly tapered thin-walled I-beams that takes into account the effect of warping torsion. The approximate shape functions are used for formulating stiffness and mass matrices. Significant improvements of accuracy and efficiency of free vibration analysis are achieved by using the stiffness and mass matrices developed in this study. Frequencies of free vibration of tapered members are compared with solutions based upon stepped representation of beam element and also are verified with model tests. The stiffness and mass matrices presented in this study can be used for the free vibration analysis of tapered and prismatic thin walled I-beams and space structures involving warping torsion.

  • PDF

Stress Analysis of a Coil Spring with Nonlinear Section (이형단면 코일 스프링의 응력해석)

  • 이인혁;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1831-1838
    • /
    • 1991
  • The deformation of coil spring with noncircular section, which is used in the engine valve of automobiles under the applied load is usually accompanied by sectional warping and additional displacements of geometric center. In this study the isoparametric beam element formulations are modified and expanded to consider these two effects. To verify these formulations, simple torsion tests are made and compared with the analysis results. For the case of the zero-pitch spring, the stress distributions of oval and circular section are coincided with those of the analysis using the solid elements. Cylindrical coil springs with oval section are analyzed. These results are agreed with those of Nagaya.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

Stress Reducing Method in the Connection Area with Pier due to the Torsion of the Girder of Fish-bone Type Bridge (경골형 교량거더의 비틀림에 의한 말뚝연결부 응력저감기법)

  • Kim, Jae-Heong;Yun, Kyung-Min;Yoon, Ki-Yong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2399-2405
    • /
    • 2014
  • A fish-bone type bridge is vulnerable to the torsional behavior due to the single girder system with planar zigzag conformation. The fixed connecting area between the girder and pier is the special weak point because the torsional load creates excessive stress concentration. Therefore, the method to reduce the stress concentration is required. In this study, the reduction efficiency of various reinforcing types to reduce the excessive stress occurring at the connecting area is evaluated by using numerical analyses.

Structural Behavior of Thin-Walled, Pretwisted Composite Beams (초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석)

  • Park, Il-Ju;Hong, Dan-Bi;Jung, Sung-Nam
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2007
  • In this work, the structural response of thin-walled, composite beams with built-in twist angles is analyzed using a mixed beam approach. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. Reissner's semi-complimentary energy functional is used to describe the beam theory and also to deal with the mixed-nature in the beam kinematics. The bending and torsion related warpings introduced by the non-zero pretwist angles are derived in closed-form through the proposed beam formulation. The theory is validated with available literature and detailed finite element analysis results for rectangular solid section beams with elastic couplings. Very good correlation has been obtained for the cases considered.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF