• Title/Summary/Keyword: warpage of product

Search Result 62, Processing Time 0.039 seconds

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

A Study of Outsell Molding Technology for Thin-walled Plastic Part (박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구)

  • Lee, S.H;Ko, Y.B.;Lee, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

Optimization of injection molding process for plastic keypad on mobile phone (휴대폰 키패드의 최적 사출성형 공정 설계)

  • Park, Eun-Seo;Shin, Sang-Eun;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • Deformation frequently occurring in injection molded products is a phenomenon displayed due to uneven shrinkage distribution and orientation of the whole molded product. Shrinkage deformation is a very serious problem because it causes deformation of the molded article and shortens the performance of the product. In this paper, we are focusing on the warpage of keypad in mobile phone. In other words, we focused on minimizing keypad deformation. In the study, the Taguchi method was applied to find the injection molding conditions that minimize the deformation of the keypad. In the case of this keypad, the main factors influencing the shrinkage deformation were predicted as the melting temperature, coolant temperature and cooling time. In addition, the optimum molding conditions were obtained and the shrinkage strain was minimized. Experiments for the Taguchi method and verification of optimal molding conditions were performed using an injection molding analysis program.

A Study on the Runner and Gate Consequence of Manufacture Double Shot Molding using CAE (CAE 를 이용한 이중사출 제품의 러너 및 게이트 영향에 대한 연구)

  • Kim, O.R.;Cha, B.S.;Lee, S.Y.;Kim, Y.G.;Woo, C.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.160-165
    • /
    • 2009
  • A Study on Effects of the Runner and the Gate of double shot injection molded Parts using CAE Double shot injection molding can inject two different materials or two different colors in the same mold in a injection molding process. Double shot injection molded parts can be characterized that the base part maintains strength and specified part can inject soft-material. It can reduce the production cost by single automatic operations. In this paper, we designed double shot injection mold for automobile emote control To inject secondary part, this part is used as an insert after external appearance of product is injected. CAE analysis was progressed gate location and runner size as variables. The analysis result is reflected in mold design process. As a result, it could solve problems which are generated in the conventional mold. Additionally, cost can be downed by reducing runner weight. As well as it could omit painting process because the surface of finished product is improved through new mold.

Robust Design for Multiple Quality Attributes in Injection Molded Parts by the TOPSIS and Complex Method (TOPSIS와 콤플렉스법에 의한 사출성형품의 다속성 강건설계)

  • Park, Jong-Cheon;Kim, Gi-Beom;Kim, Gyeong-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.116-123
    • /
    • 2001
  • An automated injection molding design methodology has been developed to optimize multiple quality attributes, which are usually in conflict with each other, in injection molded parts. For the optimization, commercial CAE simulation tools and optimization techniques are integrated into the methodology. To decal with the multiple objective problem the relative closeness computed in TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) is used as a performance measurement index for optimization multiple part defects. To attain robustness against process variation, Taguchi's quadratic loss function is introduced in the TOPSIS. Also, the modified complex method is used as an optimization tool to optimize objective function. The verification of the developed design methodology was carried out on simulation software with an actual model. Applied to production this methodology will be useful to companies in reducing their product development time and enhancing their product quality.

  • PDF

Injection Moulding of Polyetherimide Axi-Symmetric Elements (PEI계 플라스틱 축대칭 부품의 사출 성형에 관한 연구)

  • 하영욱;정태형;이범재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.68-74
    • /
    • 2002
  • This research covers the development of axi-symmetric plastic elements for injection molding with insert steel such as high stiffness Sabot. The functional requirements of sabot are concentricity and fracture resistance about vertical and horizontal forces. For these, an analysis of characteristics of PEI(polyetherimide) polymer is performed by standard test specimen with accordance of ASTM test guidance. Moldflow analysis and simulation of injection molding process are carried out in order not only to estimate of the warpage but also to predict the characteristics of residual stresses which both product and structure of mold may have. A new vertical side injection machine and transverse mold have been constructed. Results of the measuring concentricity and fracture test after molding of sabot are satisfied to design specification over Cp $ratio{\geq}1.33$. Finally, this technique needs more research application to others axi-symmetric elements having different radius with insert steel md structure analysis from now on.

Optimal Design of Process Parameters for Flatness Improvement in Semi-Solid Casting Processes (반응고 주조공정에서 평면도 증대를 위한 공정변수의 최적설계)

  • Kim, Hyun-Goo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.28-34
    • /
    • 2008
  • Mg alloy is widely used for the IT, auto and consumer electronics industries. Semi-solid casting(SSC) of magnesium alloys is used to produce high quality components. SSC process is analogous with the injection molding of plastics. The high strength and low weight characteristics of magnesium alloys render the high-precision fabrication of thin-walled components with large surface areas. To produce thin-walled magnesium alloy parts, SSC process parameters on the quality of the finished product should be clearly studied. In this paper, to select optimal process parameters, Taguchi method is applied to the optimal design of the process parameters in the SSC process. The die temperature, injection velocity and barrel temperature of the SSC process are selected for the process parameters. The effectiveness of the optimal design is verified through the CAE software.

Optimal Design of Mold Layout and Packing Pressure for Automobile TCU Connector Cover Based on Injection Molding Analysis and Desirability Function Method (사출성형 해석과 선호함수법에 기초한 자동차 TCU 커넥터 커버의 금형 레이아웃 및 보압의 최적 설계)

  • Park, Jong-Cheon;Yu, Man-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, the optimal design of the multi-cavity mold layout and packing pressure for the automobile TCU connector cover is determined based on the injection molding analysis and the desirability function method for multi-characteristic optimization. The design characteristics to be optimized are the warpage and sink marks of the product, the scrap of the feed system, and the clamping force. The optimal design is determined by performing injection molding analysis and desirability analysis for design alternatives defined by a complete combination of five mold layouts and six-level packing pressure. The optimal design shows that the desirability values for individual characteristics are quite high and balanced, and the resulting values of individual characteristics are satisfactorily low.

The Filling Balance of LDPE/ABS/PA6,6 Resin in Variable-Runner-System (가변러너시스템에서 LDPE/ABS/PA6,6 수지의 충전균형)

  • Park, H.P.;Cha, B.S.;Kang, J.K.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.641-647
    • /
    • 2006
  • During the injection molding process an excessive packing can occur in the smaller volume cavity because of volumetric difference of the family-mold. It causes warpage by increased residual stress in the product and flesh by over packing. In this study, we used a variable-runner system for the filling balance of the cavities by changing the cross-sectional area of a runner, and confirmed the filling imbalance by temperature and pressure sensors. We carried out experiments to examine the influence of types of resins such as LDPE/ABS/PA6,6 on the filling balancing of the system, in order to help mold designers, who can easily adopt the variable-runner system to their design. We also examined filling imbalance in the system with CAE analysis.

Development of Heat Exchanger Production Model Based on the Microlamination Technology and Estimation of its Economic Efficiency (마이크로 적층기술을 이용한 열교환기 생산모델 개발과 경제성 평가)

  • Ryuh, Beom-Sahng;Kim, Jae-Hee;Park, Sang-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • The development of a heat exchanger production model based on the microlamination technology and it's economic efficiency is addressed. A microchannel production model is proposed for the high-volume production. The microlamination system is made up of lamina patterning, laminae sorting and laminae bonding. A cost estimation model is developed based on the hewn cycle time and capital equipment costs. An economic efficiency analysis is performed to determine the cost drivers under the different market and product scenarios. The result of the economic efficiency analysis indicated that the device size and the production rate have a great effect on the overall manufacturing cost of microlamination devices. And it can be concluded that the microlamination should focus on bonding larger laminae and reducing both cycle time and warpage.