• Title, Summary, Keyword: warmth index

Search Result 63, Processing Time 0.041 seconds

Multi Layered Planting Models of Zelkova serrata Community according to Warmth Index (온량지수에 따른 느티나무군락의 다층구조 식재모델)

  • Kong, Seok Jun;Shin, Jin Ho;Yang, Keum Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • This study suggested the planting model of Zelkova serrata communities in the areas with the warmth index of both 80~100 and $100{\sim}120^{\circ}C{\cdot}month$. Warmth index was calculated with 449 weather points using inverse distance weighted interpolation method. The planting species were selected by correlation analysis between Z. serrata and each species of four or more frequency among the 36 relev$\acute{e}$ surveyed for this study. The result of this study is summarized as follows : Warmth index of Z. serrata communities was among $74{\sim}118^{\circ}C{\cdot}month$. Results of the correlation analysis between Z. serrata and each species observed that the Z. serrata belongs to the tree layer with warmth index of 80~100 and $100{\sim}120^{\circ}C{\cdot}month$. On the other hand, the species of Carpinus laxiflora, Quercus serrata, Prunus sargentii and Platycarya strobilacea appeared only in the tree layer with warmth index of $80{\sim}100^{\circ}C{\cdot}month$. Z. serrata and Styrax japonica appeared in the subtree layer with the warmth index of 80~100 and $100{\sim}120^{\circ}C{\cdot}month$, while Acer pseudosieboldianum, Lindera erythrocarpa, Acer mono, Quercus serrata, etc. appeared in the subtree layer with the warmth index of $80{\sim}100^{\circ}C{\cdot}month$. Z. serrata, Ligustrum obtusifolium, Lindera obtusiloba, Callicarpa japonica and Zanthoxylum schinifolium all appeared in the shrub layer with the warmth index of 80~100 and $100{\sim}120^{\circ}C{\cdot}month$. Lindera erythrocarpa, Orixa japonica, Staphylea bumalda, Akebia quinata and Sorbus alnifolia appeared in the shrub layer with the warmth index of $80{\sim}100^{\circ}C{\cdot}month$ and Styrax japonica and Stephanandra incisa appeared in the shrub layer with the warmth index of $100{\sim}120^{\circ}C{\cdot}month$, The numbers of each species planted in a $100m^2$ area of the Z. serrata community were suggested as follows : five in tree layer, five in subtree layer and nine in shrub layer. The average area of canopy are suggested to be about $86m^2$ for tree layer, $34m^2$ for subtree layer and $34m^2$ for shrub layer.

Wetness or Warmth, Which is the Dominant Factor for Vegetation?

  • Suzuki, Rikie;Xu, Jianqing;Motoya, Ken
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.147-149
    • /
    • 2003
  • The wetness, a function of precipitation and temperature etc, and the warmth, a function of temperature, are the dominant factor for global vegetation distribution. This paper employs the normalized difference vegetation index (NDVI), warmth index (WAI), and wetness index (WEI), and focuses on an essential climate-vegetation relationship at global scale. The NDVI was acquired from ‘Twenty-year global 4-minute AVHRR NDVI dataset.’ The WEI is defined as the fraction of the precipitation to the potential evaporation. The WAI was calculated by accumulating the monthly mean temperature of the portion exceeded 5$^{\circ}C$ throughout the year. Meteorological data for the WEI and WAI calculation were obtained from the ISLSCP CD-ROM. All analyses were conducted for 1 ${\times}$ 1 degree grid box on the terrestrial area of the Earth, and on annual value basis averaged in 1987 and 1988. The result of analyses demonstrated that there are two regimes in their relations, that is, a regime in which NDVIs vary depending on the WEI, and a regime in which NDVIs vary depending on the WAI. These two regimes appeared to correspond to the wetness dominant and warmth dominant vegetation, respectively. The geographical distributions of two regimes were mapped. Most of the world vegetation is categorized into wetness dominant, while warmth dominant vegetation is seen in the high-latitude area mainly to the north of 60$^{\circ}$N in the Northern Hemisphere and high-altitude areas.

  • PDF

Observational Study on Local Climatological Environment of the Mountain Adjacent the Dongyeong Herb Garden in Chilgok (칠곡 동영 약초원 인근 산지의 국지 기후 환경 관측 연구)

  • Kim, Hak-Yun;Choi, Seo-Hwan;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.897-904
    • /
    • 2016
  • We investigated the local climatological characteristics of the mountain adjacent the Dongyeong herb garden in Chilgok. We established one set of automatic weather system (AWS) on a hill where development of herb garden is in progress. The observations were continued for 2 years(2013. 07-2015.06). In this study, we analyzed the observed data comparing the data of Gumi meteorological observatory (GMO). The results showed that the air temperature(relative humidity) of Dongyeong herb garden were lower(higher) than those of GMO. Especially the differences are more during warm climate season. It means that the gaps of thermal environment between two points are mainly caused by the evaporation effects of forest. In addition, we analyzed the warmth indices(warmth index and coldness index) with the observed air temperature. The warmth and coldness indices indicate about 107 and -12, respectively. The values correspond to warm temperature climate.

Vegetation Structure and Ecological Restoration Model of Quercus mongolica Community (신갈나무림의 식생구조와 생태적 복원모델)

  • Lee, Mi-Jeong;Song, Hokyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The composition of species for each community of Quercus by vegetation and soil survey, the community classification by TWINSPAN, the structural characteristics of communities were used and analyzed during the period of 2000~2004 for Quercus mongolica forest. And the resulting suggestions for a subsequent planting model for forest are as follows. The Quercus mongolica community had the highest importance value for Quercus mongolica followed sequentially by Acer pseudosieboldianum, Acer mono, Rhododendron schlippenbachii, Tilia amurensis, Fraxinus rhynchophylla, and Fraxinus sieboldiana. As a result of suggesting a planting modeling for the Quercus mongolica communities in the areas with the warmth index of both $60.90{\sim}79.79^{\circ}C$ and $53.96{\sim}64.82^{\circ}C$, Quercus mongolica was absolutely dominant in case of the subtree layer for the accompaniment species of distribution in the planting modeling by tree layer in the two areas depending on the warmth index, while there were distinct differences shown in case of the lower tree layer. While Acer pseudosieboldianum, Tilia amurensis, Fraxinus rhynchophylla, Sorbus alnifolia, Acer mono, etc. were appeared in the subtree layer for the areas with the warmth index of $60.90{\sim}79.79^{\circ}C$. Cornus controversa, Quercus mongolica, Fraxinus sieboldiana, etc. were many appeared in the subtree layer for the areas with the warmth index of $53.96{\sim}64.82^{\circ}C$. And, when we made ecological Quercus mongolica community, subtree layer planting is different by warmth index.

The Study of Adaptable Plant Species according to Warmth Index using RCP 8.5 Scenarios in Cheonan-Si (RCP 8.5 시나리오를 이용하여 온량지수에 따른 천안시 적응 가능한 식물종 연구)

  • Kong, Seok Jun;Shin, Jin Ho;Yang, Keum Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.19-30
    • /
    • 2013
  • This study was proposed to adaptable species according to climate change using warmth index(WI) in Cheonan-Si. RCP 8.5 was used to estimate change of warmth index(WI) depending on climate change in Cheonan-Si. Climatic change of Cheonan-Si was estimated to change from cool temperate forest central zone to warm temperate forest zone. The following plant species will survive within WI change of Cheonan-Si from 2010 to 2050 : 18 species in the tree layer including Quercus serrata, Q. variabilis, Pinus densiflora, Q. acutissima etc.; 28 species in the shrub layer including Rhus trichocarpa, Lindera obtusiloba, Zanthoxylum schinifolium etc.; 24 species in the herb layer including Oplismenus undulatifolius, Carex lanceolata, etc.; 12 species in the vine plants including Smilax china, Cocculus trilobus, etc.

Temperature Factor in Silvicultural View Point in Korea - Especially on Warmth- and Cold Index - (조림학적(造林學的)으로 본 온도인자(温度因子) - 온량지수(溫量指數)와 한량지수(寒量指數)를 중심(中心)으로 -)

  • Yim, Kyong-Bin;Lee, Soo-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 1975
  • In this study, warmth and cold-indices were calculated from the climatic records for 30 year from 1931 to 1960 observed at the 80 weather stations as illustrated in Table 1 and Figs. 4 and 5. Iso-warmth index and iso-cold index lines were carefully tracked. However, subjectivity might be involved in this delimitation. The well recognized phenomena of phenology, the natural distribution of specified tree species and potentially cultivable zones of some species of economic importance were discussed with regard to these indices. It is seemed that the forest zones of Korea accepted commonly by foresters and researchers were more rationally matched with the cold indices rather than warmth indices. The forest improvement works by introduction, planting works and other related fields could be refered to these data.

  • PDF

송백류의 분포를 중심으로 하는 한라산의 수식분포대

  • 엄규백
    • Journal of Plant Biology
    • /
    • v.5 no.2
    • /
    • pp.17-20
    • /
    • 1962
  • Altitudinal zones of Mt. Hanla were geoecologically investigated, and compared with climate index, according to Coniferae distribution. For climatic index, Warmth index was calculated on Mt. Hanla. With the resultsobtained, the altitudinal zones can be classified into the following three zones; Coniferous forest zone: below $43^{\circ}$ (month-degrees) (above 1, 450m) Deci(u)us broad-leaf forest zone: $84^{\circ}$-$43^{\circ}$ (600-1, 450m) Lucidophyllous forest zone: above $84^{\circ}$ (below 600m)

  • PDF

Latitudinal Differences in the Accumulation of Soil Organic Matter in Selected Kroean Forest Types (한반도의 몇 삼림형에 따른 임토육기물 축종량의 위도적차이에 대해서)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 1971
  • Accumulation of soil organic matter and its vertical distribution at different latitudes in peninsular Korea were studied in the soil of four different forest types viz. Pinus densiflora forest, Castanea forest, Quercus acutissima forest and Carpinus laxiflora forest. Among them, accumulation of soil organic matter in Cheju sites, with a mean annual temperature of 15$^{\circ}C$, was maximum with increasing latitude, soil organic matter concentration decreased. Considering the relationship between concentration of soil organic matter and some climatic conditiions, it seems that concentrations of soil organic matter is a function of annual temperature, especially warmth index or cold index.

  • PDF

The Effect of Parenting Behavior and Parent-Child Communication on Elementary School Children's Multiple Intelligence (부모의 양육행동 및 부모-자녀 간 의사소통이 초등학교 아동의 다중지능에 미치는 영향)

  • Jang, Young-Ae
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.1
    • /
    • pp.115-129
    • /
    • 2011
  • The purpose of this study was to examine the effect of parenting behavior and parent-child communication on elementary school children's multiple intelligence. 321 children selected from two elementary schools and their mothers participated in the study. Data were collected using the multiple intelligence index, parenting behavior inventory and parent-child communication index. The data were statistically analyzed using the t-test, one-way ANOVA(Duncan test), and multiple regression analysis. The study showed that there were some significant differences in children's multiple intelligence according to the children's gender, income, mother and father's educational background. There were some significant differences in children's multiple intelligence according to the parenting behavior, warmth acceptance and permissiveness nonintervention behaviors, and to the parent-child open communication and problematic communication. It was also found that children's gender, family income, warmth acceptance behavior, permissiveness nonintervention behavior, open communication and problematic communication were all significant predictors of the children's multiple intelligence. Implications based on this study are as follows; in order to increase the children' multiple intelligence, parents should be warmer and more accepting and have open communication with their children.

Effects of Paternal Parenting Behaviors, Child-Rearing Involvement, and Father-Child Communication Perceived by Children on Their Leadership (아버지의 양육행동, 양육참여도, 아동이 지각한 아버지-자녀 간 의사소통이 아동의 리더십에 미치는 영향)

  • Jang, Young Ae
    • The Korean Journal of Community Living Science
    • /
    • v.26 no.4
    • /
    • pp.617-632
    • /
    • 2015
  • This study examines the effects of paternal parenting behaviors, child-rearing involvement, and father-child communication perceived by children on their leadership. A total of 197 children selected from three elementary schools and their fathers participated in this study. Data were collected using a parenting behavior index, a child-rearing involvement inventory, a father-child communication inventory, and a children's leadership index and statistically analyzed using the t-test, a one-way ANOVA ($Scheff{\acute{e}}$ test), and a multiple regression analysis. The results show significant differences in children's leadership according to the father's education level, family income, the father's warmth/acceptance, the father's family activity involvement, and open/problematic communication between the father and the child. The child's age, the father's education level, family income, the father's warmth/acceptance, open communication, and problematic communication were significant predictors of the child's leadership. These results suggest that a child's leadership may be strengthened if the father is warmer and more accepting and has open communication with the child.