• Title/Summary/Keyword: warm water species

Search Result 143, Processing Time 0.026 seconds

The Physiological and Ecological Comparisons between Warm (Pleuromamma sp.) and Cold Water Copepod Species (Neocalanus plumchrus) in the Northwestern Pacific Ocean Using Lipid Contents and Compositions (북서태평양에서 난수성(Pleuromamma sp.)과 냉수성(Neocalanus plumchrus) 요각류의 지방 함량 및 구성 분석을 통한 생리/생태 비교)

  • Ko, Ah-Ra;Ju, Se-Jong;Lee, Chang-Rae
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In an effort to better understand the physiological and ecological differences between warm and cold water copepod species in Korean waters using lipid contents and compositions, two species of copepods (Pleuromamma sp. as a warm water species and Neocalanus plumchrus as a cold water species) were collected from the Northwest Pacific and East Sea/Sea of Japan, respectively. The cold water species showed two fold higher lipid contents than the warm water species (11% vs. 5% of dry weight). Wax esters, known as one of the major storage lipid classes, were found to be the dominant lipid class (accounting for 64% of total lipids) in the cold water species, whereas, in the warm water species, phospholipids, which are known as membrane components, were the dominant lipid class (accounting for 43% of total lipids),with a trace amount of the storage lipids as a form of triacylglycerols (${\leq}1%$ of total lipids). With regard to the fatty acid compositions, saturated fatty acids (SAFA), especially 16:0 (about 30% of total fatty acids), were most abundant in the warm water species, whereas the polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA : 20:5(n-3)) (${\geq}16%$ of total fatty acids), were most abundant in the cold water species. Among the neutral fraction of lipids, phytol, originating from the side chain of chlorophyll and indicative of active feeding on phytoplankton, was detected only in the warm water species. Significant quantities of fatty alcohols were detected in cold water species, particularly long-chain monounsaturated fatty alcohols (i.e. 20:1(n-9) and 22:1(n-11)), which are well known to abound in cold water herbivorous copepods. However, only trace amounts of short-chain fatty alcohols were detected in the warm water species. Twelve different kinds of sterols were detected in these copepod species, with cholest-5-en-$3{\beta}$-ol (cholesterol) and cholesta-5, 24-dien-$3{\beta}$-ol (desmosterol) dominating in cold and warm water species, respectively. In addition, for the warm water species (Pleuromamma sp.), we assessed the latitudinal gradients of lipid contents and compositions using samples from three different latitudinal regions (Philippine EEZ, Japan EEZ, and the East China Sea). Although no latitudinal gradients of lipid contents were detected, the lipid compositions, particularly dietary fatty acid markers, varied significantly with the latitude. The findings of this study confirm that the distribution of lipid contents and compositions in copepods may not only indicate their nutritional condition and diet history, but may also provide insights into their living strategies under different environmental conditions (i.e., water temperature, food availability).

Using Tintinnid Distribution for Monitoring Water Mass Changes in the Northern East China Sea (북부 동중국해 수괴 변화 감시를 위한 유종섬모류 분포 적용)

  • Kim, Young-Ok;Noh, Jae-Hoon;Lee, Tae-Hee;Jang, Pung-Guk;Ju, Se-Jong;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Tintinnid species distribution has been monitored in the northern East China Sea (ECS) in the summer of 2006 through 2011. This is used to understand the water mass movements in the northern ECS. The warm oceanic tintinnid species had largely spread in 2007 in the area, indicating that there was greater warm water extension into the northern ECS. However the extension of neritic water within the Changjiang diluted water mass has strengthened in 2008 and 2010 because the neritic species distribution had relatively grown in both years. These annual results based on the biological indicators of tintinnid species are well matched with the salinity change in the area. The warm oceanic species, Dadayiella ganymedes had frequently occurred over the study years and had shown a significant relationship with the salinity change. This is valuable as a key stone species for monitoring the intrusion of the Kuroshio within the northern ECS. Information from tintinnid biological indicators can support physical oceanography data to confirm ambiguous water mass properties.

Inhabit Features of a Brown Alga Undaria peterseniana in Coastal Area of Ulleung Island (울릉도 연안산 해조류 넓미역 Undaria peterseniana의 서식 특성)

  • YOON, SUNG JIN
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.3
    • /
    • pp.747-756
    • /
    • 2015
  • Brown alga Undaria peterseniana has been interested in the commercial scale aquaculture for warm water species development in southern coastal area of Korea. However, this species was classified an endangered species caused by a decrease in habitat and natural population. In this study, inhabit characteristics of U. peterseniana was investigated in their natural habitat of Ulleung Island, Korea. The U. peterseniana population was occurred dense patches at 20~30m depth. Total length of the alga reached 1.0~2.0m and the largest width ranged 10.0~35.0cm during the study. In 2013, habitats of this species increased two sites compared with the previous year and their distribution extended to low depth (10m) of coastal area. In long-term data, seawater temperature revealed a continuous increment by strong going north of East Korea Warm Current or Ulleung Warm Eddy turning around the coast of Ulleung Island. It suggested that habitat extension of U. peterseniana may be caused by suitable settlement condition and increase of warm water around the coastal area. Current studies of this species may be continuously required in the possibility of fisheries resources as aquaculture species and index species of increment of water temperature at the fixed monitoring site in East Sea. This is the first study to research ecological feature U. peterseniana population at the natural habitat of Ulleung Island.

The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, Their Impact on the Distribution of Zooplankton in the Southern Yellow Sea

  • Wang, Rong;Zuo, Tao
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.1-13
    • /
    • 2004
  • The Yellow Sea Warm Current (YSWC) and the Yellow Sea Cold Bottom Water (YSCBW) are two protruding features, which have strong influence on the community structure and distribution of zooplankton in the Yellow Sea. Both of them are seasonal phenomena. In winter, strong north wind drives southward flow at the surface along both Chinese and Korean coasts, which is compensated by a northward flow along the Yellow Sea Trough. That is the YSWC. It advects warmer and saltier water from the East China Sea into the southern Yellow Sea and changes the zooplankton community structure greatly in winter. During a cruise after onset of the winter monsoon in November 2001 in the southern Yellow Sea, 71 zooplankton species were identified, among which 39 species were tropical, accounting for 54.9 %, much more than those found in summer. Many of them were typical for Kuroshio water, e.g. Eucalanus subtenuis, Rhincalanus cornutus, Pareuchaeta russelli, Lucicutia flavicornis, and Euphausia diomedeae etc. 26 species were warm-temperate accounting for 36.6% and 6 temperate 8.5%. The distribution pattern of the warm water species clearly showed the impact of the YSWC and demonstrated that the intrusion of warmer and saltier water happened beneath the surface northwards along the Yellow Sea Trough. The YSCBW is a bottom pool of the remnant Yellow Sea Winter Water resulting from summer stratification and occupy most of the deep area of the Yellow Sea. The temperature of YSCBW temperature remains ${\leq}{\;}10^{\circ}C$ in mid-summer. It is served as an oversummering site for many temperate species, like Calanus sinicus and Euphaisia pacifica. Calanus sinicus is a dominant copepod in the Yellow Sea and East China Sea and can be found throughout the year with the year maximum in May to June. In summer it disappears in the coastal area and in the upper layer of central area due to the high temperature and shrinks its distribution into YSCBW.

Spatio-Temporal Distribution of Euphausiids in Korean Waters in 2016 (2016년 한국 근해 난바다곤쟁이류의 시·공간적 분포)

  • Lee, Bo Ram;Park, Wongyu;Lee, Hae Won;Choi, Jung Hwa;Oh, Taeg Yun;Kim, Doo Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.456-466
    • /
    • 2021
  • The distribution and abundance of euphausiids were investigated in Korean waters in 2016. Euphausiids were sampled with a Bongo net. A CTD (Sea Bird Electronics 9 plus) measured the water temperature and salinity while sampling. Mean water temperature ranged from 4.2-31.0℃. The highest temperatures occur in September and lowest temperatures in February. The mean water salinity ranged from 27.9-34.8 psu, with the highest salinities in March and lowest in September. Euphausiid species in group W consisted of four species. Among the euphausiid species, Euphausia pacifica was the dominant species with peak densities in September. The E. pacifica from group W was distributed in the bottom cold water during summer when a thermocline was formed. Five euphausiid species occurred in group S. E. pacifica and E. nana were the dominant species. In group S, E. nana was located in the warm and saline Tsushima Warm Current, a branch of the influential Kuroshio Current. Five euphausiid species occurred in group E. E. pacifica and T. longipes were the dominant species. In group E, E. pacifica and T. longipes were distributed in the deep and cold waters, these species prefer low water temperatures and perform vertical migration. The distribution of euphausiids in Korean waters were highly influenced by mass water characteristics, such as temperature and salinity.

CALCAREOUS NANNOPLANKTON FROM THE SEOGUIPO FORMATIN OF CHEJU ISLAND, KOREA AND ITS PALEOCEANOGRAPHIC IMPLICATIONS

  • Yi Songsuk;Yun Hyesu;Choi Duck-Keun;Yoon Sun;Koh Gi-Won
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.22-28
    • /
    • 1998
  • Twenty species of calcareous nannofossils belonging to 11 genera are identified from the Seoguipo Formation in Cheju island, Korea. On the basis of the marker species, the Seoguipo Formation is biostratigraphically assigned to the Pseudoemiliania lacunosa Zone (NNl9), which corresponds to the combined zones of Emiliania annula - Emiliania ovata (CN13a-CN14a) of latest Pliocene and Early Pleistocene. Generally, cold-water species is dominant in the lower part, whereas warm-water one in the upper part. This is interpreted the palaeoceanographic condition has changed from cooling to warm phase. The change in floral composition and abundance of specific species allows the recognition of 4 ecostaratigraphic units in the Seoguipo Formation and the migration of oceanographic frontal boundary. According to nannofossil distribution in the study area, the position of an oceanographic boundary between warmer water and cooler water appeared to have oscillated north-south over the Korea Strait and Cheju island in response to glacial and interglacial cycles. The geologic time of the interpreted paleoceanographical changes determined by nannofossil biochronology is well agreed with the results obtained from the Japan Sea (East Sea) and Japan-Sea side of Japan.

  • PDF

Comparison of Fish Species Composition by Trammel Net at the Intake and Discharge of Weolseong Nuclear Power Plant (월성원자력발전소 취수구 및 배수구에서 삼중자망으로 채집된 어류의 종조성 비교)

  • Ryu, Jung-Hwa;Yoo, Jae Myung;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.883-888
    • /
    • 2016
  • We investigated fish species composition seasonally at the intake and discharge of Weolseong Nuclear Power Plant (WS-NPP) from February to November 2008 using a trammel net. At the intake, 121 individuals belonging to 28 species were collected, and 157 fish from 34 species were sampled at the WS-NPP discharge. Dominant species at the intake were Chelidonichthys spinosus (17.2%), Scomber japonicus (11.5%) and Ditrema temminckii (8.2%) at the intake, while Sillago japonica (18.5%), Chelidonichthys spinosus (13.4%) and Konosirus punctatus (8.3%) dominated at the discharge. The species count and diversity index at the discharge were highest during winter, whereas those at the intake were highest during spring, perhaps due to warm seawater at the discharge site. This study is the first to reveal an effect of effluent water on the aggregation of warm water fish species during winter.

Relationship between the Distribution of Water Masses and that of Demersal Fishes in the East China Sea in Spring

  • Cho Kyu Dae;Kim Hee Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.14-22
    • /
    • 2000
  • The relationship between the distribution of demersal fishes and that of the water masses was examined by using the catches data and hydrographic data in the Yellow Sea and the East China Sea on May 13-19, 1996 and May 10-17, 1997. During the study period, the dominant fish species were Cleisthenes pinetorum herzinsteini, Lophiomus setigerus and Pseudosciaena polyactis. These three low temperature water species accounted for $21-24\%$ of the total catches. The percentage of the low temperature water species was high in the Yellow Sea and the coastal area on the continental shelf of the East China Sea but was low in the vincinity of Kyushu during the study period. In the East China Sea, the isotherm of $15^{\circ}C$ at 50m, mid layer depth, was located more southeast in 1996 than in 1997. The bottom water temperature was about it lower in 1996 than in 1997. The direction of the detided current on the continental shelf of the East China Sea was southward in 1996 and northward in 1997. Yellow Sea Bottom Cold Water (YSBCW) strongly expanded to south in 1996 when the northward current was weak. But, Tsushima Warm Current (TSWC) strongly intruded into the continental shelf of the East China Sea in 1997. As YSBCW expanded strongly to south in 1996, the percentage of the low temperature water species relative to the total catches was high. But, TSWC strongly intruded and the percentage of low temperature water fishes was low in 1997.

  • PDF

Effects of Heated Effluents on the Intertidal Macroalgal Community near Uljin, the East Coast of Korea (동해안 울진원전의 온배수 방출이 주변 해조군집에 미치는 영향)

  • Kim, Young-Hwan;Ahn, Jung-Kwan;Lee, Jae-Il;Eum, Hee-Moon
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.257-270
    • /
    • 2004
  • In order to clarify the structure and seasonal dynamics of warm tolerant benthic marine algal community in Korea, the species composition and biomass of marine algae at the discharge canal of Uljin nuclear power plant on the East Coast of Korea were investigated seasonally from February 1992 to October 2000. 107 species of marine algae were found at the discharge canal during the past nine years. In general, the number of species observed was abundant in spring or summer and less in autumn or winter. 27 species (4 blue-green, 5 green, 6 brown and 12 red algae) of marine algae occurred more than 1/ 6 frequency and thus can be categorized as warm tolerant species. Among these, one brown (Dictyota dichotoma) and four red algae (Gelidium amansii, Anphiroa ephedraea, Hydrolithon sargassi, Marginisporum crassissimum) are recorded as warm tolerant marine algae for the first time in Korea. Padina arborescens, Anphiroa zonata and Corallina pilulifera were common species found more than 75% frequency. Seasonal fluctuations of mean biomass were 0-1,330 g dry wt m^(-2) and dominant species in biomass were Corallina pilulifera (contribution to a total biomass proportion 34%), Anphiroa zonata (23%), Padina arborescens (18%) and Sargassum micracanthum (11%). The red algae appeared as predominant algal group at the discharge canal of Uljin nuclear power plant in the qualitative and quantitative aspects. The green algae such as Enterornorpha compressa appeared rather frequently at the discharge canal, but the biomass proportion was very low, in contrast to Kori nuclear power plant where there was definite green algal dominance. Differences in algal communities developed at the discharge canals of Uljin and Kori nuclear power plant on the East Coast of Korea, particularly biomass proportions of green algae, can probably be related to local environmental factors such as water velocity through the canal and natural seawater temperatures.

Seasonal Variation of Fish Assemblages on Jangbong Tidal Flat, Incheon, Korea (장봉도 갯벌을 이용하는 어류군집의 계절 변화)

  • Seo, In-Soo;Hong, Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.510-520
    • /
    • 2010
  • This study investigated the community structure and seasonal variation of the fish assemblages on Jangbong tidal flat, Incheon, Korea. Fish were collected monthly using a small otter trawl from November 1999 to January 2001. Thirty-six fish species were recorded, with a mean density of 185 individuals and biomass of 2,594.3 gWWt. The most abundant species by number were Johnius grypotus (23.7%), Acanthogobius hasta (17.8%), and Cynoglossus joyneri (10.7%), while the dominant species by catch weight were Acanthogobius hasta (21.2%), Sebastes schlegeli (16.2%), J. grypotus (14.0%), and C. joyneri (10.8%). Cluster analysis and non-metric multi-dimensional scaling (nMDS) were applied to assess the seasonal fluctuation in the fish assemblages. Based on the result of the cluster analysis and nMDS ordination, the faunal group could be divided into cold- and warm-water specialist groups. The cold-water specialists included A. hasta, Acanthogobius luridus, Triaenopogon barbatus, Tridentiger trigonocephalus, and Liza haematocheila. The warm-water specialists were J. grypotus, C. joyneri, S. schlegeli, and Hexagrammos otakii. In conclusion, the community structure showed a distinct seasonal trend, which seemed to be related to the seasonal fluctuations in water temperature.