• Title/Summary/Keyword: warfare information system

Search Result 205, Processing Time 0.026 seconds

A Study on the Improvement of Transmission Speed of Data Link Processor (전술데이터링크 처리기의 전송 속도 개선에 대한 연구)

  • Lee, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1069-1076
    • /
    • 2019
  • With the development of information and communication technology, the military's battle environment is changing greatly to network centric warfare in where weapon system is connected in a network and carries out mission by exchanging the real-time data. The core of the network centric warfare is Tactical Data Link(TDL) system, and subscribers of TDL exchange tactical information in real time through wireline, wireless and satellite network to share the battlefield situation. The amount of data sent and received through TDL inevitably increase as military's weapon systems equipped with TDL systems increase over time and the performance of communications equipment improves. This study proposes ways to improve the transmission speed and processing capacity of the TDL system by improving the Data Link Processor.

Development of Battle Space Model Based on Combined Discrete Event and Discrete Time Simulation Model Architecture for Underwater Warfare Simulation (수중운동체 교전 시뮬레이션을 위한 이산 사건 및 이산 시간 혼합형 시뮬레이션 모델 구조 기반의 전투 공간 모델 개발)

  • Ha, Sol;Ku, Namkug;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2013
  • This paper presents the battle space model, which is capable of propagating various types of emissions from platforms in underwater warfare simulation, predicting interesting encounters between pairs of platforms, and managing environmental information. The battle space model has four components: the logger, spatial encounter predictor (SEP), propagator, and geographic information system (GIS) models. The logger model stores brief data on all the platforms in the simulation, and the GIS model stores and updates environmental factors such as temperature and current speed. The SEP model infers an encounter among the platforms in the simulation, and progresses the simulation to the time when this encounter will happen. The propagator model receives various emissions from platforms and propagates these to other "within-range" platforms by considering the propagation losses and delays. The battle space model is based on the discrete event system specification (DEVS) and the discrete time system specification (DTSS) formalisms. To verify the battle space model, simple underwater warfare between a battleship and a submarine was simulated. The simulation results with the model were the same as the simulation results without the model.

Design and Evaluation of Information Broker Architecture for Network-Centric Operational Environment (네트워크 중심 작전 환경을 위한 정보 브로커 아키텍처 설계 및 평가)

  • Park, Jejun;Kang, Dongsu
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.668-677
    • /
    • 2016
  • The information superiority through effective networking is a core element that accelerates command decision for mission completion. Our military wants to acquire capabilities of effective information sharing with Network-Centric Operational Environment(NCOE) for Network-Centric Warfare (NCW). In this paper, we suggested an information broker for overcoming current limits and maximizing future expandability and possibility of information sharing capacities. The information broker, which is an intermediate layer between users and information providers, provides the functions for mediating and managing information and for ensuring security of the system. We evaluated the consistency of proposed architecture and the implementation of the operational architecture design concept using existing design frameworks.

A Scheme of Training the MND Information Security Manpower (국방 정보보호 인력 양성 방안)

  • 박상서;최운호
    • Convergence Security Journal
    • /
    • v.1 no.1
    • /
    • pp.69-81
    • /
    • 2001
  • As soon as possible, our military have to trainning the information security manpower for Cyber Warfare, it should be block the foreign infowarrior to go by way of other country from our system. An emergency, we can protect our military information system and this thesis provide checkpoint about how we consider about trainning the infowarrior for future war.

  • PDF

Reconnaissance-Strike-Logistics Complex Systems for Future Warfare in the 21st Century (21세기 미래전의 정찰.타격.군수 복합체계)

  • 권태영;이재영
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, "a conceptual model of Reconnaissance-Strike-Logistics Complex(RSLC) in future warfare" is proposed. Basic idea of the RSLC model is to combine logistics and the pre-existing Reconnaissance-Strike Complex(RSC) through a C4 network system. That is, the RSLC model consists of reconnaissance, strike, logistics, and C4 network systems. The C4 network system creates new combat power by integrating all the other systems. The RSLC model generates three conceptual complex circles; the RSC, the SLC(Strke-Logistics Complex), and the RSLC circles. The RSC circles describes direct combat behaviors in the battlefield. On the other hand, the SLC circle indicates combat sustainment capabilities. The RSLC circle including the RSC and the SLC circles, can present a more complete combat process. There are two key advantages of the RSLC model. First of all, logistics is considered one of key combat components to form IDA(Information-Decision-Action) cycle for combat decision-making process more completely. Secondly, the capabilities of battlefield awareness which reconnaissance and war-net systems provide, can be applied not only to the strike system in the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF

An Algorithm for evaluating Combat Power Effectiveness by considering the Influence of Human Factors (인적요소의 영향력을 고려한 전투효과 평가 알고리즘)

  • Kwon, Oh-Sang;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.201-210
    • /
    • 2011
  • Each area of society has changed because of the development of information technology. Especially, the advent of NCW based on the technology of network has become a new paradigm for executing warfare. Effectiveness of NCW can be maximized by building the C4I system which is a core system of NCW. However, if we don't consider the influence in term of human dimension, we can't expect the effect of C4I system, since the key factor in C4I is human. In this paper, we propose an algorithm for evaluating Combat Power Effectiveness by considering the Influence of Human Factors that wasn't reflected in the past. Based on experimental validation our algorithm is more substantial than baseline algorithms. In addition, we proved that the Influence of Human Factors(e.g. collaboration) is the most important in battlefield. Therefore, proposed algorithm can be used for enhancing not only mission effectiveness in terms of military field but also work performance by effective Human Resource Management in terms of an enterprise.

Study of the Bomb Hit Indication of Moving Target Using Weapon Data Link Message (무장데이터링크 메시지를 이용한 기동표적 타격평가 연구)

  • Baek, Inhye;Woo, Sang Hyo;Kim, Ki Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • The Network-Centric warfare over weapon data link networks has been developed for the recent decade. Since the US navy had begun to develop tactical digital information chain, it has gradually transformed into weapon data link technology. As data link network system and its protocol have been advanced into high-technology, focusing and targeting on moving targets become possible in net-enabled environments. However, it is difficult to identify the primary information from numerous battlefields and understanding approaches to damage a target in a timely manner. In this paper, to better understand the targeting assessment, we suggest a specific solution: Bomb Hit Indication(BHI) using information in weapon data link messages. In order to prove our suggestion, we implement the BHI solution and apply it into the weapon data link integrating system.

A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System (NCW 환경에서 C4I 체계 전투력 상승효과 평가 알고리즘 : 기술 및 인적 요소 고려)

  • Jung, Whan-Sik;Park, Gun-Woo;Lee, Jae-Yeong;Lee, Sang-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.55-72
    • /
    • 2010
  • Recently, the battlefield environment has changed from platform-centric warfare(PCW) which focuses on maneuvering forces into network-centric warfare(NCW) which is based on the connectivity of each asset through the warfare information system as information technology increases. In particular, C4I(Command, Control, Communication, Computer and Intelligence) system can be an important factor in achieving NCW. It is generally used to provide direction across distributed forces and status feedback from thoseforces. It can provide the important information, more quickly and in the correct format to the friendly units. And it can achieve the information superiority through SA(Situational Awareness). Most of the advanced countries have been developed and already applied these systems in military operations. Therefore, ROK forces also have been developing C4I systems such as KJCCS(Korea Joint Command Control System). And, ours are increasing the budgets in the establishment of warfare information systems. However, it is difficult to evaluate the C4I effectiveness properly by deficiency of methods. We need to develop a new combat effectiveness evaluation method that is suitable for NCW. Existing evaluation methods lay disproportionate emphasis on technical factors with leaving something to be desired in human factors. Therefore, it is necessary to consider technical and human factors to evaluate combat effectiveness. In this study, we proposed a new Combat Effectiveness evaluation algorithm called E-TechMan(A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System). This algorithm uses the rule of Newton's second law($F=(m{\Delta}{\upsilon})/{\Delta}t{\Rightarrow}\frac{V{\upsilon}I}{T}{\times}C$). Five factors considered in combat effectiveness evaluation are network power(M), movement velocity(v), information accuracy(I), command and control time(T) and collaboration level(C). Previous researches did not consider the value of the node and arc in evaluating the network power after the C4I system has been established. In addition, collaboration level which could be a major factor in combat effectiveness was not considered. E-TechMan algorithm is applied to JFOS-K(Joint Fire Operating System-Korea) system that can connect KJCCS of Korea armed forces with JADOCS(Joint Automated Deep Operations Coordination System) of U.S. armed forces and achieve sensor to shooter system in real time in JCS(Joint Chiefs of Staff) level. We compared the result of evaluation of Combat Effectiveness by E-TechMan with those by other algorithms(e.g., C2 Theory, Newton's second Law). We can evaluate combat effectiveness more effectively and substantially by E-TechMan algorithm. This study is meaningful because we improved the description level of reality in calculation of combat effectiveness in C4I system. Part 2 will describe the changes of war paradigm and the previous combat effectiveness evaluation methods such as C2 theory while Part 3 will explain E-TechMan algorithm specifically. Part 4 will present the application to JFOS-K and analyze the result with other algorithms. Part 5 is the conclusions provided in the final part.

A Kernel Density Signal Grouping Based on Radar Frequency Distribution (레이더 주파수 분포 기반 커널 밀도 신호 그룹화 기법)

  • Lee, Dong-Weon;Han, Jin-Woo;Lee, Won-Don
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.124-132
    • /
    • 2011
  • In a modern electronic warfare, radar signal environments become more denser and complex. Therefor the capability of reliable signal analysis techniques is required for ES(Electronic warfare Support) system to identify and analysis individual emitter signals from received signals. In this paper, we propose the new signal grouping algorithm to ensure the reliable signal analysis and to reduce the cost of the signal processing steps in the ES. The proposed grouping algorithm uses KDE(Kernel Density Estimator) and its CDF(Cumulative Distribution Function) to compose windows considering the statistical distribution characteristics based on the radar frequency modulation type. Simulation results show the good performance of the proposed technique in the signal grouping.

Implementation of 2.4 GHz Wireless Keyboard and Mouse Electromagnetic Signal Analysis and Manipulate Systems (2.4 GHz 무선 키보드/마우스 전자파 신호 분석 및 조작 시스템 구축)

  • Kim, Sang-Su;Oh, Seung-Sub;Na, In-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1075-1083
    • /
    • 2016
  • Nowadays, the use of wireless input devices has been increasing on the basis of high convenience and portability. In particular the most widely used wireless keyboard and the mouse to use the 2.4 GHz frequency band, but due to the third party receives the electromagnetic wave from leaking when the radio equipment it is easy to obtain the personal information and the vulnerability is also being reported consistently. In this paper, implement a system to analyze and manipulate the packets of 2.4 GHz wireless keyboard and mouse using USRP device and GNU Radio package for verify the vulnerability of 2.4 GHz wireless keyboard and mouse. Using the construction system has attained a equipment specific address and key information by analyzing the communication protocol and the packet structure of the device was proved that a user can operate the PC to send the random key from long distance.