• Title/Summary/Keyword: wall-to-wall transition

Search Result 203, Processing Time 0.027 seconds

Critical Heat Flux and Flow Pattern for Water Flow in Annular Geometry

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.224-229
    • /
    • 1996
  • An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced- circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m. inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, chum-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow.

  • PDF

A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube (초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구)

  • 이상호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

Metal-Organic Vapor Phase Epitaxy : A Review II. Process and charactristics (MOVPE 단결정층 성장법 II. MOVPE공정 및 특징)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 1990
  • Metal-Organic Vapor Phase Epitaxy (MOVPE) is an epitaxial process utilizaing ane or more of organometallice as reactnte to grow compound semicond semiconductror layers. MOVPE is basically a cold wall process in which reactants are delivered without reacting with each other to the heated substrate where reactants are thermally decomposed to from compound semiconductors through chemical reaction. Since reactants are delivered as gas phase and the formation of the single crystal compunds depends on the thermal decomposition of the reactants, details of MOVPE relies on the hydrodynamics and pyroltsis and chemical reation of reactants inside on reaction chamber. It has been demonstrated that MOVPE is capable of growing virtually all of the III-V, II-VI and IV-VI compound semiconductrs, fabricating ultrathin epilayers, for ming abrupt hetrointerfaces with monolayer transition width, and is suitable for multi-wafer operation yilding a high throghtput. Overiew of reactror componts and layer, characteristics, and status of MOVPE are discussed.

  • PDF

An Experimental Study on Regime Limit and Pressure Drop of Dry-plug Flow in Round Mini-channels (원형 미소 채널 내 드라이 플러그류의 유동 영역 한계와 압력 강하에 관한 실험적 연구)

  • Lee, Chi-Young;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2583-2588
    • /
    • 2008
  • In the present experimental study, the regime limit and pressure drop of dry-plug flow (dry wall condition at the gas portions of plug flow) in round mini-channels has been investigated. The air-water mixture was flowed through the round mini-channels made of Teflon, where the tube diameters ranged from 1.26 to 2.06 mm. For the present experimental range, with decreasing of the tube diameter, the transition between the plug and slug flows (wet and dry) happened at the higher gas superficial velocity region, which were in good agreement with the previous flow pattern maps tested. On the other hand, the transition between the wet- and dry-plug flows was little affected by the change of the tube diameter. In the pressure drop of dry-plug flows, among the correlations tested, the Lee and Lee's (2008) correlation best fitted the measured pressure drop data within the mean deviation of 10% for the present experimental range.

  • PDF

Effect of Clearance between a Rotor and Stator of a Disk-Type Drag Pump on the Pumping Performance (고속 회전하는 원판형 드래그펌프 회전익과 고정익 사이 간극이 배기 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Lee, Soo-Yong;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1640-1645
    • /
    • 2004
  • The pumping characteristics of a single-stage disk-type drag pump ( DTDP ) are calculated,for the variation of the vertical clearance between a rotor and stator and of the radial clearance between a rotor and casing wall, by the three-dimensional direct simulation Monte Carlo (DSMC)method. The gas flow mainly belongs to the molecular transition flow region. Spiral channels of a DTDP are cut on the both the upper and lower sides of a rotating disk, but the stationary disks are planar. As a consequence of results, the vertical and radial clearances have a significant effect on the pumping performance. Experiments are performed under the outlet pressure range of 0.4 $^{\sim}$ 533 Pa. When the numerical results are compared to the experimental data, the numerical results agree well qualitatively.

  • PDF

OSCILLATORY THERMAL CONVECTION IN A HORIZONTAL ANNULUS (수평 환형 공간에서의 진동하는 열대류)

  • Yoo Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.49-55
    • /
    • 2006
  • This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Study of Lateral Force Fluctuations in Over-Expanded Nozzle Flow (과팽창 노즐 유동에서 발생하는 측력변동에 관한 연구)

  • Lee, Jong-Sung;Cha, Yong-Su;Vincent, Lijo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.253-256
    • /
    • 2009
  • In the present paper, experimental and numerical fundamental analyses of the occurrence of lateral force in overexpanded thrust nozzle were carried out. Investigation of the lateral force fluctuations in an thrust nozzle for the shutdown transient was presented. Wall pressure distribution and Schlieren Photographs as NPR were presented. Pressure peak is observed during transition of RSS to FSS.

  • PDF

A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique (큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석)

  • Choe, Myeong-Ryeol;Choe, Hae-Cheon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

Analysis of Keyhole Formation and Stability in Laser Spot Welding (레이저 점 용접의 키홀 발생과 안정성에 대한 해석)

  • 고성훈;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.484-490
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes were investigated using a numerical simulation. The effect of multiple reflections in the keyhole was estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution were calculated numerically. In the simulation, the keyhole was formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure opposed cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurred between the conduction and keyhole modes. At laser powers of 500W and greater, the protrusion occurred on the keyhole wall, which resulted in keyhole collapse and void formation at the bottom. Initiation of the protrusion was caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow had minor effects on the flow patterns and keyhole stability.bility.