• Title/Summary/Keyword: wall-to-wall transition

Search Result 203, Processing Time 0.025 seconds

A CFD study on the Supersonic Flow through a Dual Bell Nozzle

  • Gopalapillai, Rajesh;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.324-330
    • /
    • 2012
  • Dual bell nozzle is one of the most promising choices among the altitude adaptation nozzles. This facilitates having a forced, steady and symmetrical separation at lower altitudes and a controlled flow separation at the wall inflection point which prevents the generation of dangerous side loads. In order to ensure the attached flow in the second bell, a clear understanding of the flow transition is required. Hence the motivation of our study is to arrive at an optimum profile for the second bell, which allows a sudden and controlled transition. In this work, we designed the first bell using the conventional MoC and the second bell using an inverse MoC, imposing a pressure gradient constraint. A CFD analysis is also carried out. It is found that the separation point is near the inflection point within one fourth of the extension length or it is near the exit.

  • PDF

Reflection of Plane Shock Wave over Concave and Convex Walls (오목, 볼록면에서 평면충격파의 반사)

  • JEON, Heung-Kyun;KWON, Jin-Kyung;KWON, Soon-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1473-1480
    • /
    • 1999
  • In the case of Impingement of plane moving shock wave over concave or convex double wedges (pseudo-stationary flow) and cylindrical walls (truly non-stationary flow), it Is expected that there are transitions from regular reflection to Mach reflection or vice versa In shock wave reflections. In these connections, it is necessary to verify the various of reflection process and transition angle for the reflection problems In double wedges, and to verify the transition angle, effects of curvature radius and initial wall angle on it for the reflection problems In cylindrical walls. Especially, we focused our attention to confirm the existence of hysteresis phenomenon induced by the different transition processes, and Neumann paradox, which is a small discrepancy between theoretical and experimental transition angles. Experiments were carried out by using the shock tube of $6{\times}6cm^2$, and high speed photographic technique consisted of delay unit, triggering system, light source of Xe lamp and so on was used for flow visualization.

Temperature dependence of photocurrent for the AgInS2 epilayers grown by hot wall epitaxy (Hot Wall Epitaxy 방법에 의해 성장된 AgInS2 박막의 광전류 온도 의존성)

  • Park, Chang-Sun;Hong, Kwang-Joon;Lee, Sang-Youl;You, Sang-Ha;Lee, Bong-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • A silver indium sulfide ($AgInS_{2}$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, ${\Delta}cr$, and the spin orbit splitting, ${\Delta}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part IV: Experimental Study on Mechanical Properties at Elevated Temperatures (조선 해양 구조물용 강재의 소성 및 파단 특성 IV: 고온 기계적 물성치에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • This is the fourth of a series of companion papers dealing with the mechanical property reductions of various marine structural steels. Even though a reduction of the elastic modulus according to temperature increases has not been obtained from experiments, high temperature experiments from room temperature to $900^{\circ}C$ revealed that initial the yield strength and tensile strength are both seriously degraded. The mechanical properties obtained from high temperature experiments are compared with those from EC3 (Eurocode 3). It is found that the high temperature test results generally comply with the prediction values by EC3. Based on the prediction of EC3, time domain nonlinear finite element analyses were carried out for a blast wall installed on a real FPSO. After applying the reduced mechanical properties, corresponding to $600^{\circ}C$ to the FE model of the blast wall, more than three times the deflections were observed and it was observed that most structural parts experience plastic deformations exceeding the reduced yield strength at the high temperature. It is noted that a protection facility such as PFP (passive fire protection) should be required for structures likely to be directly exposed to fire and explosion accident.

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.

Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era

  • Jun, H.S.;Qi, M.;Ha, J.K.;Forsberg, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.802-810
    • /
    • 2007
  • Fibrobacter succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the rumen. It intensively degrades plant cell walls by an erosion type of mechanism, burrowing its way through the complex matrix of cellulose and hemicellulose with the release of digestible and undigested cell wall fragments. The enzymes involved in this process include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. The genome of the bacterium has been sequenced and this has revealed in excess of 100 putative glycosyl hydrolase, pectate lyase and carbohydrate esterase genes, which is greater than the numbers reported present in other major cellulolytic organisms for which genomes have been sequenced. Modelling of the amino acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of their tertiary structures. Two dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of proteins over expressed in F. succinogenes grown on cellulose, and analysis of the cell surfaces of mutant strains unable to bind to cellulose has enabled the identification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to cellulose biodegradation.

The Effect of Impact Velocity on Droplet-wall Collision Heat Transfer Above the Leidenfrost Point Temperature (Leidenfrost 지점 온도 이상에서 액적-벽면 충돌 열전달에 대한 충돌 속도의 영향)

  • Park, Jun-seok;Kim, Hyungdae;Bae, Sung-won;Kim, Kyung Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.567-578
    • /
    • 2015
  • Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.

A Study on Film Boiling Heat Transfer in a Forced Convective Flow System (강제대류계(强制對流系)에 있어서 막비등열전달(膜沸騰熱傳達)에 관한 연구(硏究))

  • Kim, Y.T.;Kwon, S.S.;Jung, D.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 1991
  • The aim of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The results of these experiments are as follows. 1. Temperature histories measured by the thermocouple, which is 0.99, 2.00, 2.99mm from the heat transfer surface showed monotonous during the cooling process. These variation are the curves of typical temperature histories in film-boiling, transition-boiling, and nucleate-boiling regions. 2. The temperature histories were measured by thermocouple installed in the copper block. The variations of the surface heat fluxes and surface temperature were computed from the numerical solution method TDMA from the measured temperature histories for radial position one dimensional heat transfer inverse problem. The boiling curves were found by the computed temperature histories. 3. The rewetting point which starts to change from film boiling to nucleate boiling is not connected with the mass velocity and it were found that the temperature of rewetting point indicated about $100^{\circ}C$. 4. The heat flux of rewetting point was about $10^5Kcal/m^2h$, at that time, the heat transfer coeficient indicated about $1000Kcal/m^2h^{\circ}C$ irrelevent to mass velocity. 5. The wall superheat decreases as the pressure increases. But I found that rewetting point appeared under higher condition in the wall temperature.

  • PDF

Improvements to the RELAP5/MOD3 Reflood Model and Assessment (RELAP5 /MOD3 재관수 모델의 개선 및 평가)

  • Chung, B.D.;Lee, Y.J.;Park, C.E.;Choi, C.J.;Hwang, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.265-276
    • /
    • 1994
  • Several improvements to the RELAP5/MOD3 reflood model hate been made. These improvement were made to correct deficiencies in the reflood model identified by the assessment of the RELAP5/MOD3 code against FLECHT-SEASET experiments. The improvements consist of modification of reflood wall heat transfer package and adjusting the droplet size in dispersed flow regime. The time smoothing of wall vaporization and level tracking of transition flow are also added to eliminate the pressure spikes and level oscillation during reflood process. Assessment of the improved model against FLECHT-SEASET experimental data and application of LBLOCA analysis for plant shows that the deficiencies have been corrected.

  • PDF