• Title/Summary/Keyword: wall-frame building

Search Result 204, Processing Time 0.024 seconds

"Buildings Without Walls:" A Tectonic Case for Two "First" Skyscrapers

  • Leslie, Thomas
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • "A practical architect might not unnaturally conceive the idea of erecting a vast edifice whose frame should be entirely of iron, and clothing the frame--preserving it--by means of a casing of stone…that shell must be regarded only as an envelope, having no function other than supporting itself..." --Viollet-le-Duc, 1868. Viollet-le-Duc's recipe for an encased iron frame foresaw the separation of structural and enclosing functions into discrete systems. This separation is an essential characteristic of skyscrapers today, but at the time of his writing cast iron's brittle nature meant that iron frames could not, on their own, resist lateral forces in tall structures. Instead, tall buildings had to be braced with masonry shear walls, which often also served as environmental enclosure. The commercial availability of steel after the 1880s allowed for self-braced metal frames while parallel advances in glass and terra cotta allowed exterior walls to achieve vanishingly thin proportions. Two Chicago buildings by D.H. Burnham & Co. were the first to match a frame "entirely of iron" with an "envelope" supporting only itself. The Reliance Building (1895) was the first of these, but the Fisher Building (1896) more fully exploited this new constructive typology, eschewing brick entirely, to become the first "building without walls," a break with millennia of tall construction reliant upon masonry

A Study on the Performance Evaluation of Form Using the Aluminum Alloy Frame Reinforced Panel (Aluminum 합금재 Frame을 이용한 벽체거푸집공법의 성능평가에 관한 연구)

  • 안재철;오상균;강병희
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 2001
  • This study is for the investigation of form using the aluminum-compound metal frame(Aluminum frame reinforced panel : AFR panel) which is improved in the capacity in the wall-concrete structure in steal of using the existing form which has problems such as, excessive exposure of cement, the loss of labor when it is constructed or disjointed, and it's economical efficiency compared with that of EURO Form. AFR panel passes the KS F 8006 test, and as a result of field test, it's displacement is satisfied with Specification. And using AFR panel is more economical than that of EURO Form because saving labor cost which plays a major part in cost saving in formwork is more effective in retrenching total cost than increment of material cost.

  • PDF

An Analysis of Influence Factors on Insitu-production and Installation Schedule of Composite Precast Concrete Members (합성 PC 부재의 현장생산 및 설치 공정계획의 영향요소 분석)

  • Lim, Chaeyeon;Kim, Sun Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.176-177
    • /
    • 2013
  • The composite PC rahmen structure, called Green Frame, allows the main structural members such as PC column and beam to be produced on the site, resulting in a reduction of PC member transportation cost and the margin of PC plant (operation cost and profit), making it more economic than the bearing wall structure. To apply the Green Frame to practice, not only installation but also insitu-production process should be considered. Therefore, this study analyse the influence factors on insitu-production and installation schedule of composite precast concrete members. The results shall be used as basic criteria on the planning of insitu-production and installation of Green Frame.

  • PDF

Lateral Resistance of Reinforced Light-Frame Wood Shear Walls

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.58-66
    • /
    • 2023
  • In light-frame timber construction, the shear wall is one of the most important components that provide resistance to lateral loads such as earthquakes or winds. According to KDS (Korea Design Standard) 42 50 10, shear walls are to be constructed using wood-based structural sheathing, with studs connected by 8d nails spaced 150 mm along the edge and 300 mm in the field. Even though small-scale residential timber building can be designed to exhibit seismic resistance using light-frame timber shear walls in accordance with KDS 42 50 10, only the abovementioned standard type of timber shear wall is available. Therefore, more types of timber shear walls composed of various materials should be tested to measure their seismic resistance, and the results should be incorporated into the future revision of KDS 42 50 10. In this study, the seismic resistance of shear walls composed of structural timber studs and wood-based structural sheathing with reinforced nailing is tested to evaluate the effects of the reinforcement. For the nailing reinforcement, shear wall specimens are constructed by applying nail spacings of 75-150 mm and 50-100 mm. For the shear wall specimens with one sheathing and reinforced nailing, the shear strengths are 1.7-2.0 times higher than that of the standard shear wall (nail spacing of 150-300 mm). The shear strength of the shear walls with sheathing on both sides is 2.0-2.7 times higher than that of the standard shear wall.

A Study on the Characteristics of Building the Japanese Castle at the Period of Japanese Invasion of Korea in 1592 and in 1597 (임진왜란과 정유재란시기 왜성 축조방법에 대한 연구)

  • Lee, Hyung-Jae
    • Journal of architectural history
    • /
    • v.18 no.1
    • /
    • pp.31-49
    • /
    • 2009
  • Periodically, the Japanese Castle was created in the domestic of Japan and then 2 Invasions into Chosun was started. The Japanese Castle in the domestic of Japan was repaired several times by the building boom of castle before & after 2 invasions and so the initially-built type of castles was changed. Accordingly, there are much difficulties to understand the original shape of Japanese Castle. Through the Japanese Castle within Korea called as the fossil of Japanese Castle, I would like to examine & consider its building period and characteristics. The terminology called as [Two Side Stone's Wall] is that of castle which is not acknowledged in the Japanese Academic Circles. However, it means the two-fold wall of Japanese Castle which was widely applied to the fortification way in the Age of Japan Edo. The terminology of [Sori] says the stonework curve in the corner of Japanese Castle which is indicated best in the Japanese Castle. It calls the curve as like the fan frame. [Curb Stone's Wall] says the type of castle wall constructed with over 1 face in wall body of Japanese Castle. (1) About classifying the construction period of Japanese Castle, the curb stone's wall and the castle having no two side stone's wall must consider the building period as that of Japanese Invasion of Korea in 1592. If there was [Sori], the two-side stone's wall was used and the place which supported the documentary data, in particular, the place having the record of contraction is considered to be confirmed as the castle constructed in the period of Japanese Invasion of Korea in 1597. (2) The two-side-type stone's wall shown in the Modern Japanese Stone Castle is difficultly considered to be generated from the Japanese Castle at the period of Japanese Invasion of Korea in 1592 and in 1597. (3) The beautiful [Sori] shown in the Modern Japanese Stone Castle was started from the Japanese Castle of Korea at the period of Japanese Invasion of Korea in 1597. It is difficultly considered which its indication was firstly generated by the Chaesung-Folded Segment Structure.

  • PDF

Effect Analysis of Duration and Costs According to Construction Method Selected by Design for Safety - Focused on Structural Frame for Exterior Wall Cladding - (설계 안전성 검토에 의해 선정된 공법의 공기와 공사비 영향 분석 - 외벽 바탕 구조물 공법 사례를 중심으로 -)

  • Kim, Min-Kyu;Kim, Jin-Dong;Lee, Young-Do;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.297-304
    • /
    • 2020
  • Design for Safety(DfS) at the design stage is introduced and executed in order to fundamentally reduce the occurrence of construction safety accidents in Korea. Therefore, in this study, the construction method selected by Design for Safety can reduce safety accidents, but the effects on construction duration and costs were examined to confirm the effectiveness of various aspects. The construction method of the structural frame for the exterior wall cladding of the building, which have the factors for the fall accident, was selected for construction safety and compared and analyzed in terms of construction duration and costs. As a result, it was found to be effective not only in terms of safety, but also in terms of construction duration and costs. Therefore, it is considered that the construction method selected by the Design for Safety at the design stage will have a positive effect on the entire construction project.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

Transient Analysis of High-rise Wall-Frame Structures with Outriggers under Seismic Load (초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석)

  • Kim, Jin Man;Choe, Eun Hui;Park, Dae Gyu;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.303-312
    • /
    • 2008
  • In this paper, the seismic behavior of shear wal-frame systems is analyzed. The governing equations of the wall-frame systems with outrigger truss are formulated through the continuum approach and the whole structure is idealized as a shear-flexural cantileverwith rotational spring. The effect of shear deformation and flexural deformation of the wall-frame and outrigger trusses are considered and incorporated in the formulation of the wall-frame structures with and without outriggers are compared by using finite element analysis incorporated with the Newmark-${\beta}$ method. Numerical results are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reason ably accurate results in the early design stage of tall building structures.

A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame (철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구)

  • Kim, Hyeon-Jin;Lee, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

Effect of Increase in Thickness of Gypsum Board Composite Panel on Improvement in Out-of-plane Drywall Stiffness (석고보드 복합패널의 후판화에 따른 면외방향 내력 증대 효과)

  • Shin, Yun-Ho;Ji, Suk-Won;Choi, Soo-kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.14-15
    • /
    • 2019
  • The demand for drywall is increasing as the structural type of apartment building is changing to a rigid frame structure. At present, the thickness of the gypsum board used for drywall is mostly 9.5mm and is required to be changed to 12.5mm to improve the performance of the wall. A structural safety test has been conducted in accordance with KS F 2613 to verify the effect of changing the thickness of the gypsum board to 12.5mm in terms of improvement as to stiffness. As a result of the test, the stiffness of the drywall has increased by about 19.6% and the impact resistance by about 30.4%.

  • PDF