• Title/Summary/Keyword: wall-frame building

Search Result 204, Processing Time 0.038 seconds

A Study on the Elastic Restoration Characteristics According to Environmental Resistance Condition of Structural Sealing Finishing Materials (구조용 실링마감재의 내환경 조건에 따른 탄성복원 특성 연구)

  • Jang, Pil-Sung;Kang, Dong-Won;Hong, Soon-Gu;Kim, Young-Geun;Kim, Sung-Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Recently, The use of the curtain wall method is increasing in construction. The curtain wall construction is widely applied to the exterior wall of the building for shortening construction period and economical efficiency. However, the replacement of deterioration of the weather resistance and structural behavior of the sealing material connecting the curtain wall method and the glass frame is necessary for introduction of the stable curtain wall method and quality improvement in accordance with KS F 4910 standard. In this study, the elastic restoring force test was performed in the external environment. In this study, the deterioration of the sealant was evaluated for structural sealants. In Korea, studies on the variable displacement behavior of structural sealants are lacked. In this study, the reproduced results in laboratory conditions are compared with the deteriorating conditions exposed to the external environment, and they are reflected in the design of sealing materials in the future. According to the results of the study, it was confirmed that the existing structure sealant meets the quality standard of KS F 4910, but in the conditions performed in this study, adhesion failure of the specimen and cracking of the surface occurred. Especially, in the weather resistance test, it is necessary to evaluate the long-term durability performance of the structural sealant used in the curtain wall method by checking the insoluble state of all the test pieces. Therefore, in order to apply a conventional structural sealant to the site, it is necessary to introduce another durability performance evaluation.

An equivalent model for the seismic analysis of high-rise shear wall apartments (고층 벽식 아파트의 지진해석을 위한 등가모델)

  • Kim, Tae-Wan;Park, Yong-Koo;Kim, Hyun-Jung;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.11-21
    • /
    • 2007
  • Currently in the country, the necessity of seismic analyses is increasing due to the increase of demand and interest in seismic design. Especially, shear wall apartments are constructed mostly for a residental building so seismic analyses for the apartment are actively executed. For the seismic analysis of the shear wall apartment, it may be not efficient in time and effort to model the entire structure by a finite element mesh. Therefore, an equivalent model is needed to simulate the dynamic behavior of the structure by decreasing the number of degrees of freedom. In this study, a method to form an equivalent model that is simple and easy to use was proposed utilizing effective mass coefficient that is highly correlated to mode shape of the structure. This equivalent model was obtained by replacing a shear wall structure with an equivalent frame structure having beams and columns. This model can be used very effectively when excessive seismic analyses are necessary in a short period because it can be operated in any commercial program and reduce the analysis time. Also, it can model floor slabs so it can represent the actual behavior of shear wall apartments. Furthermore, it is very excellent since it can represent the asymmetry of the structure.

Annual Energy Performance Evaluation of Zero Energy House Using Metering Data (실측데이터를 이용한 에너지제로주택의 연간 에너지성능평가)

  • Lim, Hee-Won;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Purpose: In this study, we evaluate the annual energy performance of the detached house which was designed with the aim of zero energy. Method: The experimental house which was constructed in Gonju Chungnam in 2013, is the single family detached house of light weight wood frame with $100m^2$ of heating area. Thermal transmittance of roof (by ISO 10211) and building external walls are designed as $0.10W/m^2K$ and $0.14W/m^2$ respectively and low-e coating vacuum window glazing with PVC frame was installed. Also grid connected PV system and natural-circulation solar water heater was applied and 6kWp capacity of photovoltaic module was installed in pitched roof and $5m^2$ of solar collector in vertical wall facing the south. We analyzed the 2014 annual data of the detached house in which residents were actually living, measured though web-based remote monitoring system. Result: First, as a result, total annual energy consumption and energy production (PV generation and solar hot water) are 7,919kWh and 7,689kWh respectively and the rate of energy independence is 97.1% which is almost close to the zero energy. Second, plug load and hot water of energy consumption by category showed the highest numbers each with 33% and 31%, with following space heating 24%, electric cooker 8%, lighting 3% in order. Hot water supply is relatively higher than space heating because high insulation makes it decreased.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.

A Study on the Meaning of Cubic Form by Salvador Dali - Focus on Salvador Dali's Work 'A Propos of the Treatise on Cubic Form by Juan de Herrera, 1960' - (살바도르 달리 입방체의 의미에 관한 연구 - 살바도르 달리의 작품 '후안 데 에레라의 입방체 연구에 대한 서문, 1960'을 중심으로 -)

  • Kim, Sung-Hye
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • Salvador Dali put a title of his work as 'A Propos of the Treatise on Cubic Form by Juan de Herrera' at 1960. Through this work which is consisted in cube frame surrounding black and white letter squares and nails in the sky, he directly referred about the cube which were showed in his pictures. To understand the meaning of this work, Dali's paintings and Juan de Herrera's design and architectural ideas are analysed by building. His concerning about absolute existence like god and nuclear takes the cubic form by Juan de Herrera instead of pictorial tendencies of Cubism, however pictorial elements such as sky and nails were still used in the work. He use alphabet letter as pattern consisting wall and symbol representing 'Juan de Herrera', moreover number '2' is taken to show up line attribute. Dali had several design develop process, and finally he reached an new stage called 'Hypercube'. Hypercube can distinguish from Cubism and Herrera's architectural idea, and it will be free from objective world based in Euclid geometry. Although cubic is the simplest shape. It can contain the variety of developments in these fields - philosophy, architecture, painting and etc.- from Platon to nuclear physics and coexists in a picture of Salvador Dali.

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings I (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 I)

  • Yoo, Changhwan;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.219-228
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames only and frames with one or more rectangular walls. Analysis results showed that there was not much difference for frames only based on capacity curves. There were some differences for frames with rectangular walls, but it was not so significant. The global behaviors represented by the capacity curve were not so different, but the feature of each analysis program appeared when the results were analyzed in more detail. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story frames only and frames with rectangular walls so that it should be noted that it is possible to get different results for frames with non-rectangular walls or mid- to high-rise buildings.

Influence of ductility classes on seismic response of reinforced concrete structures

  • Nikolic, Zeljana;Zivaljica, Nikolina;Smoljanovic, Hrvoje
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.177-195
    • /
    • 2018
  • Reinforced concrete buildings in a seismically active area can be designed as DCM (medium ductility) or DCH (high ductility) class according to the regulations of Eurocode 8. In this paper, two RC buildings, one with a wall structural system and the other with a frame system, previously designed for DCM and DCH ductility, were analysed by using incremental dynamic analysis in order to study differences in the behaviour of structures between these ductility classes, especially the failure mechanism and ultimate collapse acceleration. Despite the fact that a higher behaviour factor of DCH structures influences lower seismic resistance, in comparison to DCM structures, a strict application of the design and detailing rules of Eurocode 8 in analysed examples caused that the seismic resistance of both frames does not significantly differ. The conclusions were derived for two buildings and do not necessarily apply to other RC structures. Further analysis could make a valuable contribution to the analysis of the behaviour of such buildings and decide between two ductility classes in everyday building design.

Optimal Design of Passive Viscoelastic Dampers Having Active Control Effect for Building Structures (건물 구조물을 위한 능동 제어 효과를 가지는 수동 점성감쇠기의 최적 설계)

  • 황재승;민경원;홍성목
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.225-234
    • /
    • 1995
  • In this study, first, transformation process of damping ratios, whose are evaluated in active control analysis, into damping matrix resulting from installed viscous dampers is illustrated. Then, a method is followed to maximize the effect of response reduction, which leads to optimum locations and size of viscous dampers using sensitivity analysis. Highly coupled nonlinearity between damping ratios and dampers makes it hard to find the optimal size of dampers. Therefore, the nonlinearity is transformed to linear problem with small increments of damping ratios and the size of dampers can be found. However, there are many cases for the size of dampers satisfying the small increment of damping ratios, so it is necessary to select minimum size using optimization technique. To determine optimum locations of dampers, dampers are assumed to be installed between the different stories and their locations are selected corresponding corresponding to the degree of damping size. Numerical examples for the frame structure and the shear wall structure show that optimum locations and size of dampers are different form each other depending on the characteristics of modal responses of the structures. The proposed method in this study can be applied to get optimum locations of active controller in the active control.

  • PDF

Natural Period Estimation for the Buildings of Upper Wall and Lower Frame Type (상부벽식-하부골조를 가진 복합구조물의 고요주기예측)

  • 박기수;김희철;김종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.1-13
    • /
    • 2000
  • 상부벽식 하부골조를 가진 복합구조물은 부족한 대지를 효율적으로 활용하기 위하여 건설되고 있다. 이러한 복합건물은 상부벽식-하부골조를 가지는 구조로써 일반적으로 전이보 또는 전이판으로 상하부를 연결하고 있다. 따라서 상하부 구조사이의 강성과 질량에 많은 차이가 발생하게 된다. 구보물의 고유주기는 지진하중과 밑면전단력을 결정하기 위한 중요한 변수이다. 그러나 현재 국내 규준에서 제안하는 고유주기 산정식은 이러한 건물에는 적용할 수 없다. 본 연구에서는 상부벽식-하부골조를 가진 복합구조물의 고유주기의 산정에 영향을 미치는 변수들 중 가장 큰 영향을 미치는 건물의 상하부 층수에 따른 변수만을 고려하여 고유주기산정식을 제안하였다. 하부는 2~5개 층을 가지고, 상부는 10~18개 층을 가지는 15~20층의 건물이면 정형적인 평면을 가지는 복합구조물로 한정하였다. 건물 내부의 채움벽에 대한 효과를 고려한 고유주기 제안식은 다음과 같다. 장변 방향 : $T_{L}$=($0.20H_{h}+0.05H_{i}$)/$sqrt{B}$-0.42 단변 방향 :$T_{S}$=($0.07H_{h}+0.12H_{i}$)/$sqrt{B}$-0.40

  • PDF

Practical Design Method for Coupling Beams of Tall Buildings with Dual Frame System (이중골조형식 고층건물 커플링보의 실용설계)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.525-532
    • /
    • 2014
  • In this study, practical design method of coupling beams is proposed. The member forces varies according to the location of the members and the members at 25%~40% of building height shows large member forces. The 100mm increase of wall thickness causes 3~4% variation of member forces and the 100MPa increase of concrete strength decrease approximately 3% of member forces. The required strength of coupling beams is twice the resistant strength and 80% reduction of coupling beam stiffness is necessary to fulfill the design criteria. The stiffness reduction of coupling beams is not necessary over the entire stories and the strength reduction range can be estimated considering design requirements.