• Title/Summary/Keyword: wall-frame building

Search Result 204, Processing Time 0.032 seconds

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

Behavior of C-Shaped Beam to Square Hollow Section Column Connection in Modular Frame (모듈러 골조의 각형강관 기둥과 C형강 보 접합부의 거동 평가)

  • Lee, Sang Sup;Park, Keum Sung;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.471-481
    • /
    • 2015
  • Modular building is a prefabricated construction system for building where factory-produced pre-engineered modular units are delivered to site and assembled as substantial elements of a building. There are two basic kinds of modular structures. One is a load-bearing wall structure designed to transfer the load through longitudinal walls. The other is a frame structure composed of columns and beams. For frame structure, square hollow section is often used as a column member and channel as a beam member in modular unit. Lower and upper modules are fasten with bolts via a pre-installed access hole in the SHS column. However, the access holes can weaken the panel zone that would affect the behavior of beam to column connection. The 5 specimens of beam to column connections with parameters of access hole, column thickness and diaphragm were made and this paper describes the test results.

Development of Drift Design Method of High-rise buildings considering Material Properties of Shear Walls and Design Variable Linking Strategy (RC 전단벽의 재료 물성과 부재 그룹핑을 고려한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.487-494
    • /
    • 2004
  • Resizing techniques have been recognized as practical methods for drift design of high-rise building since sensitivity analysis and iterative structural analysis are not required in implementation. In the techniques, the amount of material of a memberin a building for resizing is determined in terms of cross-sectional areas and sectional inertia moments as design variables. In this study, five drift design methods are developed by considering design variable linking strategy and fomulating resizing algorithm in terms of material properties of shear walls as a design variable. The developed methods are applied to the drift design of 20-story frame-RC shear wall structure, and then evaluated in the view points of practicality and efficiency.

  • PDF

A Study on the Architectural Characteristics and Satisfaction Analysis of Street-scape in a Small and Medium City -Focused on the Street of Central Market, Pohang City- (중소도시 가로경관의 건축적 특성과 만족도분석 연구 -포항시 중앙상가로변을 중심으로-)

  • Choi, Moo-Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • This study aims for proposing improvement method for streetscape in a small and medium city of Korea. According to this purpose, in chapter 2, by inspecting conservation of street environment and streetscape, deduce the frame for analyzing streetscape in commercial district. In chapter 3, analyzing present condition and problems of selected streets in Pohang City, derive the primary factors to induce desirable streetscape through problems and their reason between the analyzed elements of building form. Analyzed elements are composed of floor elements, wall elements, ceiling elements. The detailed elements are pavement of road, street furniture, height of buildings, color and material of building and outdoor advertisements. In chapter 4, by conducting a questionnaire survey of pedestrians about street images -choosing impressive physical elements and the feeling of the street by the list of adjective of semantic differential scale- and the preference, propose the direction of improvement about streetscape in commercial district.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang, Hyo-Jin;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • 강효진;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

Seismic Isolation Systems Incorporating with RC Core Walls and Precast Concrete Perimeter Frames -Shimizu Corporation Tokyo Headquarter-

  • Shimazaki, Dai;Nakagawa, Kentaro
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Shimizu Corporation Tokyo Headquarters, one of the city's leading office buildings, features many pioneering technologies that contribute to a sustainable society through environmental stewardship and a sophisticated disaster management facility. In terms of structural engineering, a seismic isolation system incorporating reinforced concrete core walls and precast concrete perimeter frames create a robust structure in the event of a large earthquake. In addition to the seismic resistance of the structure, several pioneering construction methods and materials are adopted. This office building can serve as a basis for new design and construction approaches and methodologies to ensure safe and economical structures.

Seismic Performance of Low-rise Piloti RC Buildings with Concentric Core (중심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Yoon, Tae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.611-619
    • /
    • 2022
  • In this study, the seismic performance of low - rise piloti buildings with concentric core (shear wall) position is analysed and reviewed based on KDS 41. The prototype is selected among the constructed low - rise piloti buildings with concentric core designed based on KBC 2005 which was used for many low - rise piloti buildings construction. The seismic performance of the building shows plastic behavior in X-direction and elastic behavior in Y-direction. The inter-story drift is lager than that of concentric core case and is under the maximum allowed drift ratio. The displacement ratio of first story is much lager the that of upper stories, and the frame structure in the first story is evaluated as vulnerable to lateral force. Therefore, low - rise piloti buildings with concentric core need the diminishment of lateral displacement and reinforcement of lateral resistance capacity in seismic design and seismic retrofit.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Development of Vermiculite Board to Secure the Fire Resistance Performance of Light-Frame Wood Structural Wall (경골목구조 벽체의 내화성능확보를 위한 질석보드 개발)

  • Yoo, Seok Hyung;Cheong, Chang Heon
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.40-45
    • /
    • 2018
  • It is considered that vermiculite as an inorganic material is highly effective when it is used as a building finishing material because it is eco-friendly. Vermiculite has excellent properties such as fire resistance, heat insulation, sound absorption as well as prevention of condensation, deodorization and aesthetics. In this study, we developed a finishing board with vermiculite as its main material and mixed with mineral loose wool (VB-L) or mineral powder (VB-P), and conducted fireproof test and insulation test. In addition, fire resistance tests were carried out by applying the two developed vermiculite boards as finishing materials for the standard wall details of light frame wood structures (KS F 1611-1). As a result of the fire resistance test, the VB-L specimen showed better fire resistance than the VB-P specimen. Both vermiculite boards showed sufficient fire resistance performance of 2 hours for a thickness of 30 mm.