• Title/Summary/Keyword: wall height

Search Result 897, Processing Time 0.023 seconds

Nonlinearly Distributed Active Earth Pressure on a Translating Rigid Retaining Wall : II. Application (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : II. 적용성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.191-199
    • /
    • 2003
  • It is known that the distribution of the active earth pressure against a rigid wall is not triangular, but nonlinear, due to arching effects in the backfill. In the farmer paper, a new formulation was proposed for the nonlinear distribution of active earth pressure on a translating rigid retaining wall considering arching effects. In this paper, parametric study is performed to investigate the effect of ${\phi}, {\delta}$ and wall height on the magnitude and distribution of active earth pressure calculated from the proposed equations. In order to check the accuracy of the proposed formulation, the predictions from the equation are compared with both existing full-scale test results and values from existing equations. The comparisons between calculated and measured values show that the proposed equations satisfactorily predict both the earth pressure distribution and the lateral active earth force on the translating wall. Simplified design charts are also proposed for the modified active earth pressure coefficient and fur the height of application of the lateral active force in order to facilitate the use of the proposed equation.

The Effect of Wall-squat with Short-Foot Exercise on Pain and Pelvic alignment of Chronic Low Back Pain with Pronated Foot (단축발 운동을 적용한 벽 스쿼트 운동이 엎침발을 동반한 만성 허리통증환자의 통증과 골반 정렬에 미치는 영향)

  • Kim, Nam-Jun;Lee, Han-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.4
    • /
    • pp.139-151
    • /
    • 2021
  • PURPOSE: This study examined the effects of wall-squat with short-foot exercise on pain, dysfunction, and pelvic alignment in chronic low back pain patients. METHODS: Thirty outpatients diagnosed with chronic low back pain and pronated foot were enrolled in this study. The patients were divided randomly into a wall-squat with short-foot exercise group (WS; n = 15) and a normal wall-squat exercise group (NW; n = 15). These groups performed their respective exercises 15 times, for three sets, three times a week over six weeks. The visual analogue scale (VAS) was used to measure the subjects' pain, and the Roland-Morris disability questionnaire (RMDQ) was used to measure the subjects' dysfunction. A navicular drop test (NDT) was used to measure the subjects' arch height. To assess the patients' pelvic alignment, their lordosis, sacral tilt, lumbar width, sacral width, ilium length, and ilium width were measured by X-ray imaging. RESULTS: Both the WS and NW groups exhibited significant decreases in their VAS and RMDQ scores after exercise (p < .05). The WS group exhibited significant increases in their arch height (p < .05). Significant differences in the VAS, sacral tilt, sacral width, and ilium length were observed between the WS and NW groups (p < .05). CONCLUSION: These results suggest that wall-squat exercise is effective in decreasing the level of pain and dysfunction in chronic low back pain patients. In addition, the wall-squat with short-foot exercise is considered more effective in improving the pelvic alignment than without short-foot exercise. This can be an effective method for the non-pharmacological and non-surgical treatment of chronic low back pain

Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test (모형시험에 의한 점성토 보강토벽의 거동분석)

  • 이용안;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

Numerical Study on the Effect of the Wall Curvature on the Behaviors of the Impinging Sprays (충돌분무의 거동에 미치는 벽면곡률의 영향에 대한 수치해석 연구)

  • 고권현;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • In this paper a numerical study was performed for the effect of the wall curvature on the behaviors of fuel sprays impinging on the concave Surface. Actually, in the real diesel engines, a piston head has a curved shape for the purpose of the controlling the movement of fuel droplets and the mixture formation. For past decades, although many experimental and numerical works had been performed on the spray/wall impingement phenomena, the curvature effect of impinged wall was rarely investigated. The wall curvature affects on the behaviors of the secondary droplets generated by impingement and the concave wall obstructs the droplets to advance from the impinging site to outward. In present study, the simulation code was validated for the flat surface case and three cases of the different curvature were calculated and compared with the flat surface case for several parameters, such as the spray radius, the spray height and the position of vortex center of gas phase. The simulation results showed that the radial advance of the wall spray and the vortex is decreased with increasing the curvature. It was concluded that the curvature of the impinged wall significantly affects the behaviors of both the gas-phase and the droplet-phase.

Load Transfer to the Adjacent Ground Induced by the 3-Dimensional Active Displacement (3차원 주동변위에 따른 인접지반으로의 하중전이)

  • Park, Byung Suk;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.49-60
    • /
    • 2015
  • Since previous studies on the 3-dimensional earth pressure have been conducted focusing on the stability of wall, it is very difficult to find a study on the load transfer to the adjacent ground induced by the 3-dimensional active displacement. Therefore, in this study, we tried to find out the load transfer to the adjacent ground induced by the 3-dimensional active displacement depending on the size of rectangular wall which was defined by the aspect ratio, that is, the ratio of the height to the width of the wall. 3-dimensional model tests were performed in order to measure the distribution and the magnitude of load transfer to surrounding grounds. The transferred load was 17.9~30.6% less than the difference between the 3-dimensional active earth pressure and earth pressure at rest. The transferred load of both vertical and horizontal was maximum at the boundary of the active wall. The load transfer range depended on the normalized height of the active wall, and it was 0.67~1.29w in horizontal direction and 1.0~3.0h in vertical direction. The transferred load in horizontal was maximum at the height of the wall. As the aspect ratio increases the location of the maximum transferred load points becomes higher. The ratio of the transferred load area of 56~79% at 0.25w in horizontal direction and 50~58% at 1.0~1.5 in vertical direction. Diagrams showing the distribution and the magnitude of the transferred load depending on the aspect ratio were suggested.

Case Study of Environmental Segmental Retaining Wall(SRW) Using Greenstone Block (환경친화적 블록식 보강토옹벽의 설계 및 시공사례연구)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.19-28
    • /
    • 2004
  • Segmental Retaining Wall(SRW) has been variously applying in Civil and Architecture construction. Recently, the application of environmental element in all type's structures came to essential requirement, and the construction cases of retaining wall using reinforced soil and block are more increased than the past. But, this trend more widely was spread environmental element as landscape work for the backside of reinforced retaining wall as well as block itself. New environmental block, Greenstone Block, developed to apply of this tendency. The retaining wall system using Greenstone can be environmental constructing at both block itself and backside of retaining wall. The material tests, the axial compressive strength test of block and bending test of fiber-pipe, exercised to design and construction of vertical SRW, which were satisfied NCMA standard. Through this procedure, Rewall (ver 1.0) was developed, which can be automation design of SRW including internal stability, external stability and local stability. And these can be considered setback of retaining wall, as well the examples of vertical retaining wall using block presented to satisfying the follows; strength of reinforced geotextile, height of retaining wall, surcharge, types of backfill and groundwater level etc. Many problems investigated on after or before of construction were due to local failure, insufficiency of bearing capacity and groundwater level. Especially, the local failure was many occurred to during compaction or after construction, and the cases of SRW construction is similar to the results of model test on vertical SRW.

Stability of A Surcharged Tunnel under the Effect of Pre-Loading on the Adjacent Braced Wall (근접한 흙막이벽체에 가하는 선행하중의 영향을 받는 상재하중 재하 터널의 안정)

  • Kim, IL;Lee, Sang Duk
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.10-27
    • /
    • 2008
  • When the ground is excavated adjacent to the existing tunnel, which is loaded by the surcharge on the ground surface, the tunnel stability would be very sensitive to the deformation of the ground induced by the horizontal displacement of braced wall. The stability of the existing surcharged tunnel could be controlled by pre-loading on the braced wall. In this paper, it was investigated, if it would be possible to keep the existing surcharged tunnel stable by preventing the horizontal displacement of a braced wall by imposing the pre-loading during the ground excavation. For this purpose, large scale model tests were performed in a scale 1/10 at the test pit which was 2.0m in width and 6.0m in height and 4.0m in length. Isotropic test ground was constructed homogeneously by wet sand. Model tunnel was constructed in the test ground. Surcharge was loaded on the ground surface above the tunnel. During the tests, the behavior of model tunnel and model braced wall was measured. Numerical analyses were also performed in the same condition as the tests. And their results were compared to that of the model tests. Consequently, the effect of a surcharge could be compensated by imposing the pre-loading on the braced wall. The existing tunnel and the braced wall could be kept stable by preventing the horizontal displacement of the braced wall through pre-loading, although the tunnel is surcharged.

  • PDF

Structure Design System of Soundproofing Wall Using Green Stone (조경블록(그린스톤)을 이용한 방음벽 구조설계시스템)

  • Han, Jung-Geun;Han, Seung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • This study aims at the new design system development of landscape architecture structures, as soundproof wall using reinforced soil block. This structures, that is new soundproof wall system, have to be maintained stability on acting critical wind load, which is combined exist soundproof wall system and soundproof wall system using environmental green stone block. To the harmony of this system, the post block, so-called landscape block or cast block, is manufactured. It's possible to stand of the post bearing system combined with post-pile and post block. Through the comparison with a serious code for the acting wind load on the soundproof wall, the reasonable wind load could be calculated. Also, the mechanical stability on the green stone block was checked by the Lab. tests based on the UBC (Uniformed Building Code). Because the critical height of soundproof wall system using green stone generally was restricted, the new system demands to combination of the exist system and the new system. For the stability analysis of them, the utility program, SAP2000, was used. And, a semi-auto program on the design system of the new soundproof wall using green stone was developed, which can be easily use because of the simplification.

  • PDF

LARGE EDDY SIMULATION OF FULLY TURBULENT WAVY CHANNEL FLOW USING RESIDUAL-BASED VARIATIONAL MULTI-SCALE METHOD (변분다중스케일법을 이용한 파형벽면이 있는 채널 난류 유동의 대와류모사)

  • Chang, Kyoung-Sik;Yoon, Bum-Sang;Lee, Joo-Sung
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • Turbulent flows with wavy wall are simulated using Residual-based Variational Multiscale Method (RB-VMS) which is proposed by Bazilves et al(2007) as new Large Eddy Simulation methodology. Incompressible Navier-Stokes equations are integrated using Isogeometric analysis which adopt the basis function as NURBS. The Reynolds number is 6760 based on the bulk velocity and averaged channel height. And the amplitude (${\alpha}/{\lambda}$) of wavy wall is 0.05. The computational domain is $2{\lambda}{\times}1.05{\lambda}{\times}{\lambda}$ in the streamwise, wall normal and spanwise direction. Mean quantities and turbulent statistics near wavy wall are compared with DNS results of Cherukat et al.(1998). The predicted results show good agreement with reference data.

A COMPUTATIONAL STUDY ABOUT THE ASYMMETRIC AERODYNAMIC EVOLUTION AROUND A CIRCULAR CYLINDER CAUSED BY A MOVING WALL (이동 벽면에 의한 원형 실린더의 비대칭적 공력 발달에 관한 전산연구)

  • Jung J.Y.;Chang J.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.64-70
    • /
    • 2006
  • A Computational study was carried out in order to investigate the moving wall effect of a circular cylinder at a Reynolds number of $2.0{\times}10^4$. The viscous-incompressible Navier-Stokes equations and Spalart-Almaras turbulent model of the commercial CFD code were adopted for this numerical analysis. The moving wall was set parallel with the freestream, and moving speed was equal to the freestream velocity. The gap ratio is defined as the distance ratio between the circular cylinder diameter and the height from the moving wall. The results show that there is vortex shedding over the critical gap ratio and aerodynamic loads including amplitude and the Strouhal number change according to the gap ratio.