• 제목/요약/키워드: wall frame

검색결과 554건 처리시간 0.021초

비정형 철근콘크리트건물의 비선형 정적해석 (Nonlinear Static Analysis of Irregular RC Buildings)

  • 고동우;이한선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.225-232
    • /
    • 2006
  • Three building structures haying piloti frames in the lower two stories were selected as prototypes and were analyzed using nonlinear static analysis to investigate the seismic capacity of these buildings. The first one has a symmetrical moment resisting frame (Model 1), the second has an infilled shear wall in the central frame (Model 2), and the third has an infilled shear wall only in one of exterior frames (Model 3), The analytical results were compared with those of shaking table tests with regards to the overstrength and ductility of the irregular buildings. Infilled shear wall in Model 2 and Model 3 induced large overstrength factors, 6.8 and 6.0, respectively, which are about two times larger than that of Model 1, 3.5. The displacement ductility ratio in Model 2 was only 2.5, due to the shear failure of wall in the piloti stories, whereas those of Model 1 and Model 3 reached 3.2.

  • PDF

Effects of Material Nonlinearity on Seismic Responses of Multistoried Buildings with Shear Walls and Bracing Systems

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • 제24권3호
    • /
    • pp.75-84
    • /
    • 2022
  • Scads of earthquake-resistant systems are being invented around the globe to ensure structural resistance against the lateral forces induced by earthquake loadings considering structural safety, efficiency, and economic aspects. Shear wall and Bracing systems are proved to be two of the most viable solutions for seismic strengthening of structures. In the present study, three numerical models of a G+10 storied building are developed in commercial building analysis software considering shear wall and bracing systems for earthquake resistance. Material nonlinearity is introduced by using plastic hinges. Analyses are performed utilizing two dynamic methods: Response Spectrum analysis and nonlinear Time-history analysis using Kobe and Loma Prieta earthquake data and results are compared to observe the nonlinear behavior of structures. The outcomes exposed that a significant increase in the seismic responses occurs due to the nonlinearity in the building systems. It was also found that building with shear wall exhibits maximum resistance and minimum nonlinearity when subjected to dynamic loadings.

원전 기기 정착부의 내진검증 기법 사례연구 (Seismic Verification of Nuclear Power Plant Equipment Anchorage)

  • 서용표
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.215-223
    • /
    • 2000
  • In this study, the effect of stiffness ratio between base frame and anchorgae is evaluated and the seismic verification of nuclear power plant equipment anchorage is performed for typical equipment. The stiffness ratio between base frame and anchorage is mainly controlled by the effective height of side wall plate. And, the change of that stiffness ratio cause the large shift or ovreturning axis of equipment base. This shift of overturning axis of equipment base is able to reduce the factor of safety about 10%. Therefore, the adequate method for evaluating of effective height of side wall is required as further study.

  • PDF

주상복합구조의 전이보 상세설계기법 연구 (A Study for Transfer Girder Details of the Upper-Wall and Lower-Frame Structures)

  • 이한선;김상연;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.529-534
    • /
    • 2000
  • Hybrid building structure, which comprise both the residential and commercial spaces in a building, are composed of upper shear-walls and lower frames. In these hybrid structures, the structural analysis and design of transfer systems which link upper-wall and lower-frame are crucial. The available structural design methods for the transfer girder are performed by taking a prototype structure, and the details of transfer girder based on these design methods are presented and compared with regard to the dimensions and amount of reinforcements.

  • PDF

PIV의 성능개선에 관한 연구 (A Study on the Improvement of PIV Performance)

  • 이영호;김춘식;최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.34-42
    • /
    • 1994
  • The present study is aimed to improve the PIV performance by suggesting a two-frame particle identification technique and by introducing estimation method of wall pressure distribution from the velocity data. Adopted image processing system consists of one commercial image board slit into a personal computer, 2-D sheet light generator, flow picture recording apparatus and related particle identification software. A revised particle tracking method essential to PIV performance is obtained by particle centroid correlation pairing (CCP) and its effectiveness is ascertained by comparison with multi-frame identification.

  • PDF

일반벽체와 교호 샛기둥 벽체의 역학적 성능 비교 연구 (A Study on The Comparison of Mechanical Property Between The Staggered Stud Wood Wall and The Standard Wood Frame Wall)

  • 심재광;김광철
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.640-649
    • /
    • 2017
  • 목조건축의 기반을 넓히고 소비자의 만족도를 향상시키기 위해 기존의 일반목조벽체 및 기타 경량목조벽체에 대한 비교 연구가 필요하다. 따라서 본 연구에서는 일반벽체와 개선된 방식인 교호 샛기둥 벽체와의 성능 비교를 통해 새로운 가능성을 찾고자 하였다. 우선 교호 샛기둥 벽체의 강도적 특성을 평가하고 일반벽체의 강도적 특성을 비교하였다. 일반벽체를 구성하는 목재의 단면이 교호 샛기둥 벽체보다 크기 때문에 일반벽체의 최대하중이 교호 샛기둥 벽체 보다 크게 나타났다. 하지만, 두 그룹간의 통계분석에 의하면 95% 신뢰 수준에서 유의성을 보이지 않아, 교호 샛기둥 벽체는 일반벽체를 대체할 수 있는 가능성을 보여주었다. 교호 샛기둥 벽채는 샛기둥의 단면이 일반벽체보다 작기 때문에 재료를 절약할 수 있어서 일반벽체보다 더 경제적이라고 판단된다. 또한 단열재의 면적 또한 증가하므로 열교 현상의 개선도 기대된다.

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권5호
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.

CWS공법(buried wale Continuous Wall System)의 개발에 관한 연구 (Study on Development of CWS (buried wale Continuous Wall System) Method)

  • 이정배;임인식;천성철;오보환;하인호;임홍철
    • 한국건축시공학회지
    • /
    • 제6권2호
    • /
    • pp.81-89
    • /
    • 2006
  • A down construction method is frequently used in these days to reduce popular discontent and to assure sufficient working space at early stage in downtown area. There are two main problems in the existing down construction method. One is a confliction between frame works and excavation works, and the other is a cold joint in retaining wall which is unavoidable due to a sequence of concrete placement and induces a water leakage. Therefore, a new method is needed to overcome these problems. The CWS (buried wale Continuous Wall System) method was developed by authors. By replacing RC perimeter beam with embedded steel wale, the steel frame works of substructure can be simplified and the water leakage can be prevented using continuous retaining wall. Consequently, the improved qualify and reduction of construction period can be obtained from CWS method.

진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가 (Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details)

  • 백은림;김경민;천주현;오상훈;이상호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권3호
    • /
    • pp.121-129
    • /
    • 2017
  • 본 논문에서는 국내 비내진상세 조적채움벽 RC 골조의 동적거동 및 손상모드를 파악하기 위하여 실규모 크기의 비내진상세 RC 골조와 조적채움벽 RC 골조를 대상으로 진동대 실험을 실시하여 응답 및 거동 특성을 비교 평가하였다. 진동대 실험 결과, 순수 RC 골조는 기둥상하부 휨균열 및 접합부 전단균열이 심화되어 최종 파괴되었다. 조적채움벽 RC 골조의 경우 골조의 손상은 비교적 작았으며 조적벽체의 중앙부의 슬라이딩 균열 및 대각 전단 균열 손상이 크게 발생하였다. 조적채움벽 RC 골조는 순수 RC 골조에 비하여 초기상태의 공진주기가 짧아졌으며 최종 가진시에서 최대변위응답은 약 62% 감소하였다. 본 연구에서 적용한 조적채움벽은 비내진 상세를 가지는 RC 골조의 강성을 약 1.6배, 최대 강도를 약 2.2배 증가시키는 데 기여하는 것으로 분석되었다.

프리컷 방식을 적용한 기둥-보 공법의 수평전단내력 (Shear Performance of Post and Beam Construction by Pre-Cut Process)

  • 황권환;박주생;박문재
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.1-12
    • /
    • 2007
  • 한국형 목조건축 실현 및 국내산 조림 낙엽송의 유효 이용을 위해 전통목구조에 있어 널리 사용되는 짜맞춤 공법을 응용한 기계 프리컷 방식으로 드리프트 핀 접합한 낙엽송 집성재 기둥-보 곡법에 대해 수평전단내력성능을 평가하였다. 기계 프리컷 가공된 부재로부터 기둥-보 공법으로 이루어진 골조구조체, 골조와 경골목구조 공법을 혼용한 벽구조체에 대해 현행 KS F 2154 기준에 의거하여 수평전단반복시험을 행하여 얻어진 하중-변위로부터 전단 변형과 전단력의 관계를 산출하였다. 무재하식 수평전단 가력에 의해 최대 전단내력을 골조구조체에서 1.9 kN/m, 벽구조체에서 9.7 kN/m, 전단강성계수는 167 kN/rad, 8198 kN/rad로 각각 나타났다. 골조구조체는 벽구조체에 비해 하중 분담률이 20% 정도, 강성에 있어서는 2% 정도로 나타났으며, 전단내력벽의 최대 전단내력은 골조에 비해 상대적으로 변형성능이 낮게 나타났다. 일본건축학회의 벽배율 산정법에 의한 전단내력벽의 벽배율은 1.5로 산출되었다. 전단내력벽의 전단성능 향상을 위해서는 주각부 및 기둥-보, 못과 면재에 대한 차후 검토와 수평전단 가력법에 대한 검토가 필요한 것으로 판단되었다.