• Title/Summary/Keyword: wall design

Search Result 2,979, Processing Time 0.026 seconds

The Effect on Scenic Impression by Different Construction Methods of Green Wall

  • Hong, Kwang-pyo;LEE, Hyuk-jae
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.133-142
    • /
    • 2019
  • This study aims to understand how different construction methods impact scenic preference of green wall and clarify features of each construction method to help select the most suitable construction method for the wanted image of a green wall by providing the basic data for further development and distribution of green wall. Questionnaire developed by the Repertory Grid technique proved that 11 adjectives can be used to describe scenic features of a green wall and 4 preference elements. The result of the Scenic evaluation, the Felt type scored high in 'Aesthetic' and 'Maintenance' meaning that it is the most suitable method when constructing a green wall to improve urban scenery. Regression analysis was conducted to understand the link between the preference elements and scenic impression of a green wall. The result is that the higher the preference is on the design of a green wall, the higher the score is for 'Aesthetic'. Also, the higher the preference is on Bio-Diversity, Design, Growth, the higher the score is for 'Natural'. The above findings can be important measures and reference for selection of the right construction method when planning a green wall.

A Study on the Architectural Design Plans Using BIPV (BIPV를 활용한 건축물 디자인 계획에 관한 연구)

  • Juen, Guen-Sik;Ryu, Soo-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, features and design effects of PV(Photovoltaic) modules were classified to help the installation of BIPV(Building Integrated Photovoltaic) In addition, through domestic and international trends and cases survey, installation method was organized and applicable range of efficiency and design from First-generation solar cells to the third-generation solar cell was classified. Frist, Crystalline Solar cell module of first-generation is appropriate for the wall type, roof, louver, shading and etc. It has superiority of technology and price stability and can be achieved by a variety of aesthetic effects. Second, Dye-Sensitized Solar Cell of Thin Film solar cell can express a variety of colors, adjust light transmittance and maximize the aesthetic splendor. It is appropriate for the wall type, window type, curtain wall type and etc. Also, see-through type solar cell can provide comforts cause of free flow of light. And it is advantageous from economic due to adjust the indoor temperature. It is appropriate for the atrium type, curtain wall type, window type and etc.

The Study of Structure Design for Dividing Wall Distillation Column (분리벽형 증류탑의 구조 설계 및 분리 특성 연구)

  • Lee, Seung Hyun;Lee, Moon Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • This paper proposed a shortcut method for the structure design of dividing wall column based on the Fen-ske-Underwood equation by applying it on three conventional simple column configuration. It is shown that the proposed shortcut method can design the column structure including the feed tray, dividing wall section, and side-stream tray in a simple and efficient way in the initial design stage. Simulation study using HYSYS to compare the energy saving performance between the conventional sequential two column system and the dividing wall column designed by the proposed method shows that the proposed dividing wall column system saves from 16% to 65% more over the condepends on the composition of intermediate component while the optimal energy consumption pattern to internal flow distribution on the dividing wall section is characterized by the ESI factor of the feed mixture.

Development of an Integrated Design Automation System for Retaining Wall Structures (옹벽 구조물을 위한 설계 자동화 통합 시스템 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Kim, Do;Lee, Min-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.294-299
    • /
    • 2008
  • Nowadays there are numerous factors to design the structure even for simple one, but many parts of the work are similar to the existing or repeated simply. In this case, design of the structure is unnecessarily needed lots of effort and time. To solve difficulties of design, an integrated design automation system for retaining wall structures that widely used is developed. The automation system consists of following items, 1) XML data structure between modules, 2) CAD visualization system to provide drawing sheets, 3) excel solution to provide structural design sheets and bills of quantity, 4) design logic to analysis and calculate behaviors of structure, and 5) GUI to represent data and results for the program.

  • PDF

Application of Capacity Design Methodology to RC Coupled Shear Wall (능력설계에 의한 RC 연결전단벽 구조의 내진설계)

  • Lee, Han-Seon;Jeong, Seong-Wook;Ko, Dong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.295-298
    • /
    • 2005
  • Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19$\%$ and 17$\%$, respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state.

  • PDF

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.

Deformation Based Seismic Design of Asymmetric Wall Structures (변형에 기초한 비대칭 벽식 주초의 내진설계)

  • 홍성걸;조봉호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-53
    • /
    • 2002
  • Current torsional provisions focus n restricting torsional effect of asymmetric wall structures by proportioning strength of wall based on the traditional assumption that stiffness and strength are independent. Recent studies have pointed out that stiffness of structural wall is dependent on the strength. This implies that actual stiffness of walls can be determined only after torsional design is finished and current torsional provisions may result in significant errors. To overcome this shortcoming, this paper proposes deformation based torsional design for asymmetric wall structures. Contrary to the current torsional provisions, deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Main purpose of deformation based torsional design is not to restrict torsional response but to ensure intended torsional mechanism according to the capacity design concept. Because displacement and rotation angle can be used as performance criteria indicating performance level of asymmetric structures, this method can be applied to the performance based seismic design effectively.

Optimal Design Conditions of Retaining Wall with Relieving Platform through Real-Scale Numerical Analysis (실단면 수치해석을 통한 선반식 옹벽의 최적 설계 조건)

  • Moon, In-Jong;Kim, Byoung-Il;Han, Jin-Tae;Stuedlein, Armin W.
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.55-65
    • /
    • 2016
  • Retaining wall with relieving platform has advantages in terms of stability and costs because it decreases the earth pressure by installing the relieving platform. However, there have not been previous studies of the optimal design for the retaining wall with reliving platform in practice. In this study, the optimal design conditions of the retaining wall with relieving platform are proposed by evaluating the reduction effect of lateral earth pressure based on the numerical analysis of 40 cross sections by changing wall types, wall heights, shelf locations and lengths. As a result, the optimal location of a shelf is the central part of a retaining wall (h/H=0.50) and the optimal length is recommended to be designed to satisfy b/L=0.45, at least.

Numerical Analysis for Optimum Reinforcement Length Ratio of Reinforced Earth Retaining Wall (보강토옹벽의 최적 보강길이비 산정을 위한 수치해석적 연구)

  • Park, Choonsik;Ahn, Woojong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.5-14
    • /
    • 2018
  • Recently, method of reinforced earth retaining wall have been proposed according to the material of facing, geosynthetic, construction method, and facing slope. However, the regulations such as the design method and detailed review items according to each construction method are not clear, and collapse due to heavy rainfall frequently occurs. In this study, to obtain a more stable technical approach in the design of reinforced earth retaining wall, the combination of the pullout failure of reinforced earth retaining wall and the optimal reinforcement ratio of height using reinforced earth retaining wall using a single strength reinforcement is assumed, optimum design of stiffener, optimal design of superimposed wall and optimum length ratio of reinforcement material of geosynthetics are proposed through safety factor according to reinforcement length ratio (L/H).

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.