• Title/Summary/Keyword: wall design

Search Result 2,996, Processing Time 0.027 seconds

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma;Sai Li;Xuanyi Zhou;Yuanchun Sun;Zihan Cui;Ziqi Tang
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2023
  • Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.

The Tentative Plans of Middle-rise Traditional Houses (Han-ok) Located on Seoun-dong in Urban Area of Cheongju, Korea (중층형 생활한옥 모델시안 연구 - 청주 서운동의 사례를 중심으로 -)

  • Kim, Chan Gu;Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2022
  • Focusing on the creation of a new han ok, especially a mid-rise hybrid-structured Han-ok, this study proposes a middle-rise (four-story) Han-ok on one and two lots located in Seoun-dong, the existing Han-ok intensive housing site in downtown Cheongju. 1) In terms of layout and function, according to the existing L-shaped Han-ok corresponding to the road and the direction, the parking lots and shops on the 1st floor, the business facility on the 2nd floor, the Han-ok on the 3rd and 4th floors are placed. There are yards, open roof yards, and semi-open Daecheong(大廳, main hall), which can be shared by residents. 2) In terms of structure and form, one or two floors (some 3 floors) are 5.4m square and 5.4×6.6m modules of the RC(Reinforced Concrete) group, and the upper floor reflects the 2.7m module, size and shape of the existing Han-ok. By extending the outer wall of the RC group in the lower floors (1st to 3rd floors) to the wooden exterior of the upper floors (2nd to 4th floors), it is attempted to avoid the awkward appearance of the RC group being exposed to wooden structures. And it is also attempted to reflect the wooden shape and design elements through the elevation elements such as horizontal windows, corner windows, picture frames, and vertical slits. 3) In environmental control and facilities, it is attempted to smooth the ventilation of the building by forming a vertical upward airflow from the dark space of the low floor to the positive of the upper floor. This doubles the effect through a vertical rise of cold air generated in a narrow alleyway, piloti parking lot, and the various voids. In addition to the Daecheong and Numaru(loft) of Han ok, the rooftop yard, the terrace, and the balcony, horizontal natural ventilation is generated through divided doors and transom windows.

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

A Road Traffic Noise Management Using a Noise Mapping Simulation (소음지도 시뮬레이션을 이용한 도로교통소음 개선방안 연구)

  • Kim, Hyung-Chul;Jeong, Jea-Hun;Kwon, Woo-Taeg
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.353-360
    • /
    • 2007
  • Rapid urbanization and population increasing are making a high-rise residential building and high-density residential area. According to spacial concentration of population is occurred road traffic noise problem. Now we are popularly using almost only noise barrier installation, but it makes many disfunctions such as poor landscape, low noise barrier performance and crimes. The purpose of this research is to figure out which is best method one the traffic noise management. Alternative are composed to building layout type ($30^{\circ},\;90^{\circ},\;180^{\circ}$), separation between road and residential building, noise barrier types(noise barrier only, noise barrier and forests and etc). The noise barrier are shown to reduce barrier and building layout angle $30^{\circ}$ position is the best comparing with horizontal and vertical layouts. The gab distance is decreased approximately noise level 5dB(A). We figured out there are noise important method except noise barrier wall and it was analyzed how much decreased. This can be very useful before making a road planning and residential building design.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Case Study on Realistic Content Development Process of Public Enterprise - Focus on case of Korea Industrial Complex Corporation Gallery - (공기업의 실감콘텐츠 개발 프로세스 사례연구 - 한국산업단지공단 홍보관 사례를 중심으로-)

  • Chung, Hae Won;Cho, Woo Ri
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.91-97
    • /
    • 2024
  • Recently, with the rapid development of digital media technology, Realistic content that stimulates users' five senses is being used in various fields. This study focused on the case of the development of the Korea Industrial Complex Corporation's public relations center as the subject of the study to study the realistic content development process of public enterprises. First, the realistic content development process was divided into 10 stages and practical guidelines were presented to help develop realistic content in the future by presenting important development points and methods at each stage. Second, among the realistic content development processes, the importance of storytelling was analyzed at the scenario stage. Third, various methods of displaying content were analyzed. In the case of the Korea Industrial Complex Corporation's public relations center, it was proposed in three ways: story video, experience video, and media wall. It is suggested that the role of branding, promotion, and PR can be performed in one public relations center through an effective development process.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Heat transfer characteristics of an internal cooling channel with pin-fins and ribbed endwalls in gas turbine blade

  • Vu T.A. Co;Hung C. Hoang;Duy C.K. Do;Son H. Truong;Diem G. Pham;Nhung T.T. Le;Truong C. Dinh;Linh T. Nha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.153-175
    • /
    • 2024
  • In jet engines, turbine blade cooling has an extremely important role. The pin-fin array, which is situated close to the trailing edge of the blade, aids in internal cooling of the gas turbine blades and preserves the structural integrity of the blade. Previous studies often focused on pin-fin configurations, but the current research focuses on improving the geometry at the endwalls to reduce wake vortices behind the pin-fins and enhance heat transfer at the endwalls location. Using the k-ω turbulence model, a numerical study was conducted on a ribbed shape situated on the walls between pin-fin arrays, spanning a Reynolds number range of 7400 to 36000, in order to determine the heat transport characteristics. The heat transfer efficiency coefficient and Nusselt number increase dramatically with the revised wall configuration, according to the numerical data. The channel's heat transfer efficiency is increased by enlarging the heat transfer areas near the pin-fins and by the interaction of the flow with the endwalls. The addition of ribs causes the Nusselt number of the new model to climb from 78% to 96% at the previously given Reynolds numbers, and the heat transfer efficiency index to rise from 60% to 73%. The height (Hr), position (Lr), forward width (Wf), and backward width (Wb) of the ribs are among the geometric elements that were looked at in order to determine how they affected the performance of heat transmission. In comparison to the reference design, the parametric study results demonstrate that the best forward width (Wf/R=18.75%) and backward width (Wb/R=31.25%) increase the heat transfer efficiency index by 0.4% and 1.3%, respectively.

The Effect of Insoles on the Pressure Distribution of the Anterior and Posterior sole during Squat Exercise in Subjects with Calf Muscle Shortness (장딴지근 단축 대상자에게 스쿼트 운동 시 인솔이 발바닥 앞·뒤 압력분포에 미치는 영향)

  • Eun Kyung Koh
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.3
    • /
    • pp.66-77
    • /
    • 2024
  • Background: The purpose of this study was to determine the effects of insoles on the plantar pressure distribution during squat exercise in subjects with calf muscle shortness. Design: Cross-sectional Study Methods: Thirty subjects were participated in each fifteen subjects of a control group and an experimental group with calf muscle shortness. The participants were allocated in control group or experimental group according to knee-to-wall test. They were asked to perform squat exercise at hip flexion angle of 20° and knee flexion angle of 45° across three conditions with insole(2.0cm and 3.5cm) and without insole. The plantar pressure distribution was measured using Pedoscan equipment. In order to find out whether there is a significant difference in the plantar pressure distribution between the groups and the height, the two-way mixed ANOVA test was used and the statistical significance level was .05. Results: As a result of the study, the plantar pressure distribution between the group and the height showed a significant interaction effect(p<.001). There was no significant difference according to the insole height of 2.0cm and 3.5cm in all the control groups and the experimental group. Conclusion: We found that the plantar pressure distribution shifted backward during squat exercise by wearing the insole to subjects with shortening of the calf muscle. We suggest that wearing an appropriate height of insole may change the plantar pressure distribution during squat exercise in subjects with calf muscle shortness.