• Title/Summary/Keyword: wall design

Search Result 2,983, Processing Time 0.029 seconds

A study on the Application of Inorganic Reinforced Non-Flammable Molding to Building Exterior (무기계보강 CLC 불연몰딩의 건축물 외벽적용 연구)

  • Kwon, Hae-Won;Gong, Min-Ho;Lee, Chang-Woo;Choi, Byung-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.61-62
    • /
    • 2021
  • Exterior wall molding, which is widely applied as a design element of the exterior wall of domestic apartment, should be applied as a nonflammable or semi-nonflammable material grade according to the rules on standards for evacuation/fire protection structures of buildings. For this reason, stone and AL sheet are mainly used, but stone is expensive and design autonomy is low. Inorganic reinforced CLC nonflammable molding was applied to the exterior wall of the building through tests of nonflammable performance, noise reduction, and installation stability.

  • PDF

Parametric Study on Explosion Impact Response Characteristics of Offshore Installation's Corrugated Blast Wall (해양플랜트 설비 Corrugated Blast Wall의 폭발 충격응답 인자 특성에 관한 파라메트릭 연구)

  • Kim, Bong-Ju;Kim, Byung-Hoon;Sohn, Jung-Min;Paik, Jeom-Kee;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.46-54
    • /
    • 2012
  • More than 70% of the accidents that occur on offshore installations stem from hydrocarbon explosions and fires, which, because they involve blast effects and heat, are extremely hazardous and have serious consequences in terms of human health, structural safety, and the surrounding environment. Blast barriers are integral structures in a typical offshore topside module to protect personnel and safety critical equipment by preventing the escalation of events caused by hydrocarbon explosions. Many researchers have shown the adequacy of the simple design tool commonly used by the offshore industry for the analysis and design of blast walls. However, limited information is available for corrugated blast wall design with explosion impact response characteristics. Therefore, this paper presents a parametric study on the explosion impact response characteristics of an offshore installation's stainless steel corrugated blast wall. This paperalso investigates and recommends design parameters for the structural design of a corrugated blast wall based on a nonlinear structural analysis of experiential results.

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Preliminary numerical study on hydrogen distribution characteristics in the process that flow regime transits from jet to buoyancy plume in time and space

  • Wang, Di;Tong, Lili;Liu, Luguo;Cao, Xuewu;Zou, Zhiqiang;Wu, Lingjun;Jiang, Xiaowei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1514-1524
    • /
    • 2019
  • Hydrogen-steam gas mixture may be injected into containment with flow regime varying both spatially and transiently due to wall effect and pressure difference between primary loop and containment in severe accidents induced by loss of coolant accident. Preliminary CFD analysis is conducted to gain information about the helium flow regime transition process from jet to buoyancy plume for forthcoming experimental study. Physical models of impinging jet and wall condensation are validated using separated effect experimental data, firstly. Then helium transportation is analyzed with the effect of jet momentum, buoyancy and wall cooling discussed. Result shows that helium distribution is totally dominated by impinging jet in the beginning, high concentration appears near gas source and wall where jet momentum is strong. With the jet weakening, stable light gas layer without recirculating eddy is established by buoyancy. Transient reversed helium distribution appears due to natural convection resulted from wall cooling, which delays the stratification. It is necessary to concern about hydrogen accumulation in lower space under the containment external cooling strategy. From the perspective of experiment design, measurement point should be set at the height of connecting pipe and near the wall for stratification stability criterion and impinging jet modelling validation.

Design Development of wall mount type air purifier (벽걸이 형식을 도입한 공기청정기 디자인 개발)

  • Han, Il-Woo
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.219-222
    • /
    • 2005
  • This study is for the design developement of wall mount air purification device used for pleasant and clean resident environment. As more people have the high standard of living, they are interested in the air quality of indoor environment, since it is believed its relationship with human health. Now the social demand of air purifier is increasing. Its market is growing and there are various design products in the market. However, dominant current products are floor-based standing type, it needs much spaces to install for the air inhalation and exhaust. Therefore, this product provides the space-saved design. Its concept comes from existing wall mount type air conditioners. The effect of wall decoration is another merit of this proposal. It has an easy filtering change and cleaning system and a simple operation of multiple functions. This product also has the perfect-matched slim design that is consist of natural curves with rectangle for any indoor spaces.

  • PDF

Study on Optimal Design and Walking gait of Parallel Typed Walking Robot (병렬기구 보행로봇의 최적설계와 걸음새에 관한 연구)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.56-64
    • /
    • 2009
  • This paper presents a parallel typed walking robot which can walk in omni-direction and climb from a floor to a wall. We design a six D.O.F leg mechanism composed of three legs, which form a parallel mechanism with a base and a ground to generate arbitrary poses. Optimal design is conducted to maximize the walking space and the dexterity, which are normalized by the stroke of leg. Kinematic parameters are found to maximize the weighted optimal objectives. We design a triple parallel mechanism robot by inserting Stewart platform between the upper leg mechanism and the lower leg mechanism and examine the gaits when the robot walks on the ground and climbs from a floor to a wall. The analysis of walking space and dexterity for each gait shows that the triple parallel walking robot has a large walking space with a large stability region. We explore the possibility that the robot can climb from a floor to a wall. Investigating the gaits for the six steps proves that the robot can lift the foot up to the wall by combining the orientational walking space generated by three parallel mechanisms.

Shape Optimization of Sedimentation Tank Using Response Surface Method (반응면기법을 이용한 침전조의 형상최적설계)

  • Kim, Hong-Min;Choi, Seung-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.

Strength design criterion for asymmetrically reinforced RC circular cross-sections in bending

  • Hernandez-Montes, E.;Alameda-Hernandez, P.;Gil-Martin, L.M.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.571-585
    • /
    • 2013
  • Asymmetrical reinforcement for circular sections in wall piles is an efficient construction component with reduced embodied energy. It has been proven that asymmetrical reinforced wall piles may save more than 50% of the reinforcement than the traditional symmetrically reinforced circular sections. The use of this new type of structural member increases the number of variables in the design problem, which makes its use by engineers more complicated. In order to facilitate the use of the asymmetrically reinforced piles, this paper presents a criterion for the design of this type of structural member. The chosen criterion has been analyzed with the help of flexural capacity-cost curves. The new criterion is similar to the design procedure traditionally used for RC beams.

Optimal Design of Solvent Recovery Process with Dividing Wall Column for Film Making Process (분리벽형 증류탑을 적용한 필름공정의 폐용매 회수공정 최적설계)

  • Lee, Seung-Hyun;Zo, Moon-Shin;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1209-1214
    • /
    • 2006
  • This paper presents an application of Dividing Wall Column(DWC) to the recovery of the waste solvent from the film making processes. The waste solvent feed contains MEK(Methyl-Ethyl-Ketone), Toluene, Cyclohexanone, and water. The commercial software $HYSYS^{TM}$ was used for rigorous simulation and analysis. Sensitivity analysis for several major design variables were carried out to achieve the optimal design of the process. Distribution of the internal vapor and liquid flows to the prefractionator and main sections is shown to be the most dominant design factor for energy saving efficiency in the DWC process. The simulation results also show that the solvent recovery process using the DWC significantly improves both the energy efficiency and the compactness of the solvent recovery process.

Design of Directional Structural-Acoustic Coupled Radiator in Wave Number Domain (파수 영역에서 지향성 구조-음향 연성 방사체 설계)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.240-243
    • /
    • 2005
  • A design procedure using spatial Fourier transform is presented for a structural-acoustic coupled radiator that can emit sound in the desired direction with high power and low side lobe level. The design procedure consists of three steps. Firstly, the structural-acoustic coupled radiator is chosen to obtain strong coupling between structural vibration and acoustic pressure. The radiator is composed by two spaces which are separated by a wall. Spaces can be categorized as reverberant finite space and unbounded semi-infinite space, and the wall are composed of two plates and an opening. The velocities on the wall are predicted. Secondly, directivity and energy distribution of radiator are predicted in wave number domain using spatial Fourier transform. Finally, optimal design variables are calculated using a dual optimal algorithm. Its computational example is presented including the directivity and resulting pressure distribution using proposed procedure.

  • PDF