• Title/Summary/Keyword: wall damper

Search Result 68, Processing Time 0.03 seconds

Seismic Performance Enhancement of Building Structures with Beam-end Rotation Type Dampers (보단부 회전형감쇠기를 이용한 건축구조물의 내진성능보강)

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.589-597
    • /
    • 2008
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module(VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 설계 변수별 압력맥동 특성에 관한 수치적 연구)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Song, Kyung-Suk;Kim, Bo-Kyoum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.186-192
    • /
    • 2007
  • In general, pulsation damper is installed in fuel rail for conventional MPI engine to decrease undesirable noise in vehicle cabin room. However, pulsation damper is so expensive that there are prevailing studies to reduce fuel pressure pulsations with integrated damping effect. This paper is one of basic studies for development of fuel rail to abate pulsations with self-damping effect. Primarily, the pressure pulsation characteristics was investigated with aspect ratio of cross section, wall thickness, and materials of fuel rail. A high aspect ratio or thin wall was found to absorb the pressure pulsations effectively. But volume effects on the fuel pressure pulsation reductions were not especially significant than cross section effects because volume increment rate is larger than pressure pulsation reduction rate. The fuel rail made of aluminum is effective for reduction of pressure pulsation than that of low-carbon steel. Pressure change period increases on the basis of same lengths of supply line and fuel rail as the volume is enlarged and/or the thickness of wall is thinned.

A Tuned Liquid Mass Damper(TLMD) for Controlling Bi-directional Responses of a Building Structure (건축구조물의 2방향 진동제어를 위한 동조액체질량감쇠기)

  • Heo, Jae-Sung;Park, Eun-Churn;Lee, Sang-Hyun;Lee, Sung-Kyung;Kim, Hong-Jin;Cho, Bong-Ho;Jo, Ji-Seong;Kim, Dong-Young;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.345-355
    • /
    • 2008
  • This paper presents a design of a tuned liquid mass damper(TLMD) for controlling bi-directional response of high-rise building structure subjected to windload. The proposed damper behaves as a tuned mass damper(TMD) of which mass is regarded as the mass of a tuned liquid column damper(TLCD) and the case wall of the TLCD itself in one direction and the TLCD in the other direction. Because the proposed device has coupled design parameter along two orthogonal directions, it is very important to select designing components by optimal fine tuning. In the designing TLMD, for easy maintenance, the rubber-bearing with small springs was applied in TMD direction. In this study, the Songdo New City Tower 1A in Korea, which has been designed and constructed two TLCDs in order to control bi-directional response, was chosen as the model building structure. The results of rotation test proved the effectiveness of bi-directional behavior of TLMD.

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Stability of Haptic System with consideration for Sample-and-Hold Methods and Properties of Haptic Device (샘플-홀드 방식과 햅틱 장치 물성치에 따른 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5338-5343
    • /
    • 2013
  • In a haptic system, a virtual wall is modeled as a virtual spring. The larger the stiffness of the virtual spring is, the more improved the reality of the virtual wall is, but the more unstable the haptic system becomes. This paper shows how to increase the stiffness of the virtual spring while the stability of the haptic system is guaranteed and shows the effects of a mass (Md) and a damper (Bd) of a haptic device on the stability when first-order hold method is applied and a virtual wall is modeled as a virtual spring (Kw). The simulation results show the boundary of the virtual spring is proportional to the square root of the mass (Md) and the damper (Bd) while maintaining the stability. The relation among the virtual spring (Kw), the mass (Md) and the damper (Bd) of the haptic device, and sampling time (T) is inferred as $K_w{\leq}{1.611M_d}^{0.50}{B_d}^{0.50}T^{-1.51}$, by using the simulation results. The maximum available stiffness of the virtual spring in first-order hold method is larger than in zero-order hold method. So the reality of the virtual wall can be improved.

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

An Experimental Study on Seismic Performance of Two-story Reinforced Concrete Frames Retrofitted with Internal Steel Frame and Wall Type Friction Damper (내부 철골끼움골조 및 벽체형 마찰댐퍼(WFD)로 보강된 2층 철근콘크리트골조 내진성능에 대한 실험적 연구)

  • Yoo, Chang-Gi;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.64-72
    • /
    • 2022
  • In this study, in order to confirm the seismic performance of reinforced concrete frames retrofitted with Wall Friction Damper(WFD), the test was conducted by setting two-story Reinforced concrete frames (reference specimen, OMF-N and specimen retrofitted with internal H-shaped steel frame and WFD, OMF-ALL(H)) as main variables. The WFD Seismic Retrofit Method is a mixture of strength improvement and energy dissipation methods. To prevent the pre-destruction of existing structure by friction force before sufficient energy dissipation of WFD, the internal H-shaped steel frame and chemical anchor that penetrates the side of the beam were used to install WFD. According to the test results, the OMF-N specimen showed an brittle failure pattern caused by the shear force of the R/C column after the maximum strength was expressed. The OMF-ALL(H) specimen showed that the reduction of pinching effect and the failure of the RC column occurred. Also, the maximum strength, cumulative energy dissipation and ductility of OMF-ALL(H) increased 3.01 times, 7.2 times and 1.72 times for OMF-N. As a results, test results revealed that the WFD Seismic Retrofit Method installed on Reinforced concrete structure improves the seismic performance and the strengthening effect is valid.

Seismic Performance Evaluation of the Low-Rise Buildings with Different Seismic Retrofit Procedures (구조물 내진보강법에 따른 저층 건축물의 내진성능평가)

  • Song, Min Ah;Lee, Sicheol;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.553-560
    • /
    • 2016
  • After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.

Control Effectiveness of Shear Walls Connected by Beams with Friction Dampers (인방보에 마찰형 감쇠기가 설치된 전단벽의 제진효과)

  • Chung, Hee-San;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.105-115
    • /
    • 2009
  • Numerical analysis of shear walls governed by flexural behavior is conducted for the seismic control performance of proposed friction dampers installed at the center of coupling beams. Control effectiveness of shear walls connected by beams with the proposed dampers are compared for single shear wall with same flexural rigidity. Average responses of the shear walls with the dampers are found with seven scaled-downed earthquakes based on KEC 2005 design spectrum. Slip load is the most important design parameter. It is designed to be 5, 10, 20, 30, 60, 90% of total vertical shear force at damper location to prevent damper slip in specific stories. Nonlinear time-history analysis is conducted by using SeismoStruct analysis program. Seismic control performance of the dampers is evaluated for base shear, energy dissipation, curvature and top-floor displacement. Results show that the dampers are the most effective in reducing the responses when their total slip load is 30% of total vertical shear force.