• Title/Summary/Keyword: wall connection

Search Result 260, Processing Time 0.023 seconds

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.

Seismic Behavior of Steel Coupling Beam-Wall Connection with Pane Shear Failure (패널파괴형 철골 커플링 보-벽체 접합부의 내진거동)

  • Park Wan-Shin;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yang Il-Seung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.431-434
    • /
    • 2005
  • In the past decade, various experimental programmes were undertaken to address the lack of information on the interaction between steel coupling beams and reinforced concrete shear wall in a hybrid coupled shear wall system. In this paper, the seismic performance of steel coupling beam-wall connections in a hybrid coupled shear wall system is examined through results of an experimental research programme where three 2/3-scale specimens were tested under cyclic loading. The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. Panel shear strength reflects enhancement achieved through mobilization of the reinforced concrete panel using face bearing plates and/or horizontal ties in the panel region of steel coupling beam-wall connections.

  • PDF

Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall

  • Ghods, Saeedeh;Kheyroddin, Ali;Nazeryan, Meissam;Mirtaheri, Seyed Masoud;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.915-935
    • /
    • 2016
  • Steel systems composed of Reinforced Concrete column to Steel beam connection (RCS) have been raised as a structural system in the past few years. The optimized combination of steel-concrete structural elements has the advantages of both systems. Through beam and through column connections are two main categories in RCS systems. This study includes finite-element analyses of mentioned connection to investigate the seismic performance of RCS connections. The finite element model using ABAQUS software has been verified with experimental results of a through beam type connection tested in Taiwan in 2005. According to verified finite element model a parametric study has been carried out on five RCS frames with different types of lateral restraint system. The main objective of this study is to investigate the forming of plastic hinges, distribution of stresses, ductility and stiffness of these models. The results of current research showed good performance of composite systems including concrete column-steel beam in combination with steel shear wall and bracing system, are very desirable. The results show that the linear stiffness of models with X bracing and steel shear wall increase remarkably and their ultimate strength increase about three times rather than other RCS frames.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.

Modeling of Precast Concrete Shear Walls BIM Program (BIM 프로그램을 이용한 프리캐스트 콘크리트 전단벽의 모델링)

  • Mun, Ju-Hyun;Yoon, Hyun-Sub;Kim, Jong-Won;Eom, Byung-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.451-462
    • /
    • 2022
  • The objective of the study is to establish a BIM modeling of precast concrete(PC) shear wall with various wall-to-base connections. The family library of PC shear wall was established in BIM program using component function in a IFC(Industry foundation classes) file format and SketchUp program. From the BIM program, the amounts of concrete, reinforcing bars and steel materials as well as the interference of arranged reinforcing bars can be accurately evaluated in the PC shear walls with spliced sleeves, bolt, or welding plate connection methods. Although the additional metallic materials such as steel plates, bolts, and nuts were used in the PC shear walls with welding plate connection method, their amounts of materials, economic efficiency, and environmental impact were similar to those with spliced sleeve connection. Consequently, the bolt or welding connection is a highly applicable method as wall-to-base connection of PC shear walls, and it was a more useful method than spliced sleeve method, particularly considering the constructability.

An Experimental Study on Shear Friction Behavior of RC Slab and SC(Steel Plate Concrete) Wall Structure with Connection Joint (RC 슬래브와 SC 벽 접합부의 전단마찰 거동에 관한 실험연구)

  • Lee, Kyung Jin;Hwang, Kyeong Min;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, the structure behavior of RC slab and SC shear wall connection was investigated. Also experimental study was performed to evaluate the factor of safety of demand shear connection strength in KEPIC SNG Standard. As a result, shear friction strength of connection was known about 300kN and shear strength of rebar increased according to the displacement increase. With the installment of the lower rebars, 40% shear strength increased compared to the non-rebar specimen.

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Thermal Performance Evaluation at corners of the External wall of Modern New Han-oks using Temperature Difference Ratio inside (내표면 온도차 비율(TDRi) 분석을 통한 현대 신한옥 외벽 모서리 부위 단열성능 평가)

  • Lee, Ju-Yeob;Song, Min-Jeong;Lee, Tai-Gang;Kim, Sun-Woo;Cheon, Deuk-Youm
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.103-112
    • /
    • 2016
  • Recently, many New Han-oks have been constructing in all over the country to popularize as a type of green house. But, achievement of thermal performance of external wall is still the very important issue to become popular. Purpose: The purpose of this study is to verify the thermal performance level of modern New Han-ok through Temperature Difference Ratio inside(TDRi) analysis at corners of the external wall in Han-ok. Method: To achieve this goal, measurements were carried out in 12 Han-oks(experimental mock-up(1), exhibition Han-ok(1), happy village Han-oks(10)) by taking a infra-red thermography using thermal video system. Following are analysis items about connection joint between wall and wood columns of external wall conditions; the part between external wall and external wall(2D), external wall and ceiling(or floor)(2D), 2 external walls and ceiling(or floor)(3D) and so on. Result: It was analyzed that the probability of condensation at most of connection joint appear high and TDRi of 3D corners is higher than that of 2D corners in general. It means that the development of construction techniques about connection joint between wood columns and external wall is still required. The results of this study may be used to improve the construction technology of new Han-ok and as a basis for the specifying the desired thermal comfort environment of dwelling.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.