• 제목/요약/키워드: wall collapse

검색결과 242건 처리시간 0.023초

Ramifications of Structural Deformations on Collapse Loads of Critically Cracked Pipe Bends Under In-Plane Bending and Internal Pressure

  • Sasidharan, Sumesh;Arunachalam, Veerappan;Subramaniam, Shanmugam
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.254-266
    • /
    • 2017
  • Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked $90^{\circ}$ pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

두 개의 비대칭 축방향 관통균열이 존재하는 증기발생기 세관의 소성붕괴압력 평가 (Evaluation of Plastic Collapse Pressure for Steam Generator Tube with Non-Aligned Two Axial Through-Wall Cracks)

  • 문성인;장윤석;이진호;송명호;최영환;김영진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1070-1077
    • /
    • 2005
  • The $40\%$ of wall thickness criterion which has been used as a plugging rule is applicable only to a single cracked steam generator tubes. In the previous studies performed by authors, several failure prediction models were introduced to estimate the plastic collapse pressures of steam generator tubes containing collinear or parallel two adjacent axial through-wall cracks. The objective of this study is to examine the failure prediction models and propose optimum ones for non-aligned two axial through-wall cracks in steam generator tubes. In order to determine the optimum ones, a series of plastic collapse tests and finite element analyses were carried out for steam generator tubes with two machined non-aligned axial through-wall cracks. Thereby, either the plastic zone contact model or COD based model was selected as the optimum one according to axial distance between two clacks. Finally, the optimum failure prediction model was used to demonstrate the conservatism of flaw characterization rules for various multiple flaws according to ASME code.

옹벽(콘크리트 옹벽)의 안전작업 지침 개요 (Research on the safety working instructions in the retaining wall construction (concrete retaining wall))

  • 오기택;강경식
    • 대한안전경영과학회지
    • /
    • 제18권1호
    • /
    • pp.25-33
    • /
    • 2016
  • This guidance purpose is setting Safety Health work instruction for prevent accident such as falling from heights work, collapse and trapped under the heavy equipment and Sediment collapse during retaining wall work by unsder the Industry Safety and Health rules.

UNCERTAINTY ANALYSIS OF DATA-BASED MODELS FOR ESTIMATING COLLAPSE MOMENTS OF WALL-THINNED PIPE BENDS AND ELBOWS

  • Kim, Dong-Su;Kim, Ju-Hyun;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.323-330
    • /
    • 2012
  • The development of data-based models requires uncertainty analysis to explain the accuracy of their predictions. In this paper, an uncertainty analysis of the support vector regression (SVR) model, which is a data-based model, was performed because previous research showed that the SVR method accurately estimates the collapse moments of wall-thinned pipe bends and elbows. The uncertainty analysis method used in this study was an analytic uncertainty analysis method, and estimates with a 95% confidence interval were obtained for 370 test data points. From the results, the prediction interval (PI) was very narrow, which means that the predicted values are quite accurate. Therefore, the proposed SVR method can be used effectively to assess and validate the integrity of the wall-thinned pipe bends and elbows.

비선형 동적해석에 의해 내진설계된 철근콘크리트 보통 전단벽의 지진취약도 분석 (Seismic Fragility Assessment of Ordinary RC Shear Walls Designed with a Nonlinear Dynamic Analysis)

  • 전성하;박지훈
    • 한국지진공학회논문집
    • /
    • 제23권3호
    • /
    • pp.169-181
    • /
    • 2019
  • Seismic performance of ordinary reinforced concrete shear wall systems commonly used in high-rise residential buildings is evaluated. Three types of shear walls exceeding 60m in height are designed by performance-based seismic design. Then, incremental dynamic analysis is performed collapse probability is assessed in accordance with the procedure of FEMA P695. As a result, story drift, plastic rotation, and compressive strain are observed to be major failure modes, but shear failure occur little. Collapse probability and collapse margin ratio of performance groups do not meet requirement of FEMA P695. It is observed that critical wall elements fail due to excessive compressive strain. Therefore, the compressive strain of concrete at the boundary area of the shear wall needs to be evaluated with more conservative acceptance criteria.

두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델 (Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks)

  • 이진호;송명호;최영환;김낙철;문성인;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF

Optimum Global Failure Prediction Model of Inconel 600 Thin Plate with Two Parallel Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.316-326
    • /
    • 2004
  • The $40\%$ of wall criterion, which is generally used for the plugging of steam generator tubes, is applied only to a single crack. In a previous study, a total number of 9 failure models were proposed to estimate the local failure of the ligament between cracks, and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however known that parallel axial cracks are more frequently detected than collinear axial cracks during an in-service inspection. The objective of this study is to determine the plastic collapse model that can be applied to steam generator tubes containing two parallel axial through-wall cracks. Three previously proposed local failure models were selected as the candidates. Subsequently, the interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed to determine the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a COD base model was selected as an optimum model.

Estimation of Collapse Moment for Wall Thinned Elbows Using Fuzzy Neural Networks

  • Na, Man-Gyun;Kim, Jin-Weon;Shin, Sun-Ho;Kim, Koung-Suk;Kang, Ki-Soo
    • 비파괴검사학회지
    • /
    • 제24권4호
    • /
    • pp.362-370
    • /
    • 2004
  • In this work, the collapse moment due to wall-thinning defects is estimated by using fuzzy neural networks. The developed fuzzy neural networks have been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy neural network to reduce the sensitivity to the input change and the fuzzy neural networks are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, two fuzzy neural networks are trained for two data sets divided into the two classes of extrados and intrados defects, which is because they have different characteristics. The relative 2-sigma errors of the estimated collapse moment are 3.07% for the training data and 4.12% for the test data. It is known from this result that the fuzzy neural networks are sufficiently accurate to be used in the wall-thinning monitoring of elbows.

3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가 (Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis)

  • 김태순;박치용;김진원;박재학
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.