• Title/Summary/Keyword: wall cladding

Search Result 34, Processing Time 0.027 seconds

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.

Correlation of internal and external pressures and net pressure factors for cladding design

  • Bodhinayake, Geeth G.;Ginger, John D.;Henderson, David J.
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • Net pressures on roofs and walls of buildings are dependent on the internal and external pressure fluctuations. The variation of internal and external pressures are influenced by the size and location of the openings. The correlation of external and internal pressure influences the net pressures acting on cladding on different parts of the roof and walls. The peak internal and peak external pressures do not occur simultaneously, therefore, a reduction can be applied to the peak internal and external pressures to obtain a peak net pressure for cladding design. A 1:200 scale wind tunnel model study was conducted to determine the correlations of external and internal pressures and effective reduction to net pressures (i.e., net pressure factors, FC) for roof and wall cladding. The results show that external and internal pressures on the windward roof and wall edges are well correlated. The largest ${\mathcal{C}}_{{\check{p},net}$, highest correlation coefficient and the highest FC are obtained for different wind directions within 90° ≤ θ ≤ 135°, where the large openings are on the windward wall. The study also gives net pressure factors FC for areas on the roof and wall cladding for nominally sealed buildings and the buildings with a large windward wall opening. These factors indicate that a 5% to 10% reduction to the action combination factor, KC specified in AS/NZS 1170.2(2011) is possible for some critical design scenarios.

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

Present State Investigation and Analysis of Cladding System in High rise Residential Buildings (초고층 주거건물 외피시스템의 현황조사 및 분석)

  • Seok Ho-Tae;Kwak Hyun-Chul;Song Seung-Yeong
    • Journal of the Korean housing association
    • /
    • v.15 no.5
    • /
    • pp.43-50
    • /
    • 2004
  • As residential buildings becomes high rise buildings, the new cladding system was needed for structure system, and unpredictable problems were found in it. The aim of this study is to analysis the present state and find improvement of indoor environment in high rise residential building, which used curtain wall system. Then, suggest to create comfortable indoor environment for high rise residential buildings in the process of design.

Thermal Performance of Developed Cladding Systems on Multi-Family Residential Buildings (공동주택에 적용 가능한 건식 외벽시스템 시공에 따른 단열성능 검토)

  • Hong, Goopyo;Kang, Ji-Yeon;Kim, Hyung-Geun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.267-268
    • /
    • 2018
  • The purpose of this study was to analyze the thermal performance of a cladding system which developed for easy maintenance and flexibility and installed on a long-life housing. The developed cladding systems were finished mock-up test at an authorized certification laboratory and were satisfied with the standard of the external wall system. The surface temperature and linear thermal transmittance of the cladding system were investigated by using the THERM as a simulation program. The joining part between the cladding systems had a weakness of condensation resistance. The surface temperature of the joining part was improved by filling and adding insulation.

  • PDF

Probabilistic Estimation of LMR Fuel Cladding Performance Under Transient Conditions

  • Kwon, Hyoung-Mun;Lee, Dong-Uk;Lee, Byung-Oon;Kim, Young ll;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.144-153
    • /
    • 2003
  • The object of this paper is the probabilistic failure analysis on the cladding performance of WPF(Whole Pin Furnace) test fuel pins under transient conditions, and analysis of the KALIMER fuel pin using the preceding analysis. The cumulative damage estimation and Weibull probability estimation of WPF test are performed. The probabilistic method was adapted for these analyses to determine the effective thickness thinning due to eutectic penetration depth. In the results, it is difficult to assume that a brittle layer depth made by eutectic reaction is all of the thickness reduction due to cladding thinning. About 93% cladding thinning of the eutectic penetration depth is favorable as an effective thickness of cladding. And the unreliability of the KALIMER driver fuel pin under the same WPF test condition is lower than that of the WPF pin because of the higher plenum-fuel volume ratio and lower cladding inner radius vs. thickness ratio. KALIMER fuel pin developed from conceptual design has a more stable transient performance for a failure mechanism due to fission gas buildup than the WPF pin.

Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding

  • Raj, Amritha;Sathyan, Dhanya;Mini, K.M.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.151-161
    • /
    • 2021
  • The major shortcoming of concrete in most of the applications is its high self-weight and thermal conductivity. The emerging trend to overcome these shortcomings is the use of foam-concrete, which is a lightweight concrete consisting of cement, filler, water and a foaming agent. This study aims at the development of a cost-effective high-volume fly-ash foam-concrete insulation wall cladding for existing buildings using natural fiber like rice straw in different proportions. The paper reports the results of systematic studies on various mechanical, acoustic, thermal and durability properties of foam-concrete with and without replacement of cement by fly-ash. Fly-ash replaces 60 percent by weight of cement in foam-concrete. The water-solid ratio of 0.3, the filler ratio of 1:1 by weight, and the density of 1100 kg/㎥ (approx.) are fixed for all the mixes. Rice straw at 1%, 3% and 5% by weight of cement was added to improve the thermal and acoustic efficiency. From the investigations, it was inferred that the strength properties were increased with fly-ash replacement up to 1% rice straw addition. In furtherance, addition of rice straw and fly-ash resulted in improved acoustic and thermal properties.

Effect Analysis of Duration and Costs According to Construction Method Selected by Design for Safety - Focused on Structural Frame for Exterior Wall Cladding - (설계 안전성 검토에 의해 선정된 공법의 공기와 공사비 영향 분석 - 외벽 바탕 구조물 공법 사례를 중심으로 -)

  • Kim, Min-Kyu;Kim, Jin-Dong;Lee, Young-Do;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.297-304
    • /
    • 2020
  • Design for Safety(DfS) at the design stage is introduced and executed in order to fundamentally reduce the occurrence of construction safety accidents in Korea. Therefore, in this study, the construction method selected by Design for Safety can reduce safety accidents, but the effects on construction duration and costs were examined to confirm the effectiveness of various aspects. The construction method of the structural frame for the exterior wall cladding of the building, which have the factors for the fall accident, was selected for construction safety and compared and analyzed in terms of construction duration and costs. As a result, it was found to be effective not only in terms of safety, but also in terms of construction duration and costs. Therefore, it is considered that the construction method selected by the Design for Safety at the design stage will have a positive effect on the entire construction project.

The Wind Pressure Evaluation on Exterior Wall for High-rise Buildings (고층구조물 외벽의 내풍설계를 위한 풍압평가)

  • Lee Kyu-Ung;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.63-70
    • /
    • 2005
  • For using narrow site effectively, recently constructions of high-rise buildings have been increased. High-rise buildings are mainly governed by wind loads. Since wind flow Is vaned irregularly, the experimental method such as wind tunnel test is used to evaluate real wind loads. In this study, it is intended to estimate design wind pressure and amounts of material of cladding by AIK recommendations and wind tunnel test. Also, this study includes the investigation of reliability, suitability and economical efficiency in design of cladding of buildings by AIK recommendations and wind tunnel test by comparing and examining various results. Finally, it is concluded that not only AIK recommendations but also wind tunnel test should be considered to get the reasonable wind pressure acting on the cladding of high-rise buildings.

  • PDF

Evaluation of Endcap Welding Test for a Nuclear Fuel Rod having External and Internal Tube Structure (내외부 이중튜브구조를 갖는 핵연료봉의 봉단마개 용접시험 평가)

  • Kim, Soo-Sung;Kim, Jong-Hun;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1377-1380
    • /
    • 2008
  • An irradiation test of a nuclear fuel rod having external and internal tube structure was planned for a performance. To establish fabrication process satisfying the requirements of irradiation test, micro-TIG welding system for fuel rods was developed, and preliminary welding experiments for optimizing process conditions of fuel rod was performed. Fuel rods with 15.9mm diameter and 0.57mm wall thickness of cladding tubes and end caps have been used and optimum conditions of endcap welding have been selected. In this experiment, the qualification test was performed by tensile tests, helium leak inspections, and metallography examinations to qualify the endcap welding procedure. The soundness of the welds quality of a dual cooled fuel rods has been confirmed by mechanical tests and microstructural examinations.

  • PDF