• Title/Summary/Keyword: walking-induced vibration

Search Result 32, Processing Time 0.021 seconds

Application of Equivalent Walking Loads for Efficient Analysis of Floor Vibration Induced by Walking

  • Kim, Gee-Cheol;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.65-76
    • /
    • 2004
  • Walking loads are usually considered as nodal loads in the finite element vibration analysis of structures subjected to walking loads. Since most of the walking loads act on elements not nodes, the walking loads applied on the elements should be converted to the equivalent nodal walking loads. This paper begins with measuring walking loads by using a force plate equipped with load cells and investigates the characteristics of the walking loads with various walking rates. It is found that the walking loads are more affected by walking rates than other parameters such as pedestrian weight, type of footwear, surface condition of floor etc. The measured walking loads are used as input loads for a finite element model of walking induced vibration. Finally, this paper proposes the equivalent nodal walking loads that are converted from the walking loads acting on elements based on finite element shape functions. And the proposed equivalent walking loads are proved to be applicable for efficient analysis of floor vibration induced by walking loads.

  • PDF

Investigation on Human Perception Level under Walking and Heel Drop Vibrations Using Shaking Table Test (진동대 실험을 통한 보행진동과 뒷꿈치 충격진동의 인지수준 비교)

  • 한상환;이상욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • Floor vibrations in residence and office buildings are typically induced by heel drop and walking movement of occupants. The criteria of most vibration provisions have been developed based on the vibration caused by heel drop impact rather than walking. There may be considerable differences between the vibration characteristics induced by walking and heel drop. The effect of walking vibration was not well reflected on current provisions. In this paper, shaking table test was performed to investigate the human perception level against the vibrations due to walking and heel drop. This study attempts to compare the human Perception level of two different vibration sources. Also, this study investigates the effect of damping on a Perception level under heel drop and walking vibration.

보행하중을 받는 구조물의 효율적인 진동해석

  • 김기철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.159-166
    • /
    • 2000
  • Structures with a long span have a higher possibility of experiencing excessive vibration induced by human activities such as walking, running, jumping and dancing. These excessive vibration give occupants annoyance. The general method for the vibration analysis of structures subjected to walking loads is to apply a series of nodal loads with assigned time delays at the nodes. But this method has a limit in representing the walking loads. In this study, the equivalent nodal loads are introduced for an effective analysis of floor vibration induced by walking loads. And, walking loads with difference walking rate are measured and applied to the analytical model for numerical analysis.

  • PDF

Vibration Analysis of Building Floor Subjected to Walking Loads (보행하중을 받는 건축물 바닥판의 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

A Study on the Walking Loads Subjected to Floor Slabs (바닥판의 보행하중에 대한 실험적 연구)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.273-280
    • /
    • 2000
  • Building structures which are in need of large open space make the damping effect of the structures decrease greatly. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities. These excessive vibration make the residents uncomfortable and the serviceability deterioration. The loads induced by human activities were classified into two types. First type is in place loads as like jumping, foot stamping and body bouncing. The other type is moving loads as like walking, running and dancing. A series of laboratories experiments had been conducted to study the dynamic loads induced by human activities, The earlier works were mainly concerned to parameters study of dynamic loads as like activity type, weight, sex, surface condition of structure and etc. In this paper, we have measured directly the walking loads by using the platform. And we have evaluated and analyzed load-time history of walking loads. One of the most important parameter is pacing rate (walking speed) in the walking loads. The difference between the maximum value and minimum value of walking loads depends on the walking speed.

  • PDF

A Study on Measurement and Assessment of Local Vibration by Walking-type Cultivator (보행형 관리기의 국소진동 측정과 평가에 관한 연구)

  • Noh, Kyoung-Kyu;Park, Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • The goal of this study was to assess the level of vibration in an walking-type cultivator, and to provide a basic information to manage the vibration exposure for farmers. The latent periods of vibration-induced white finger (VWF) were assessed through analyzing the vibration levels and frequency characteristics. Also, vibration acceleration levels based on the daily vibration exposure duration was suggested. The latent periods of vibration-induced white finger were assessed by ISO 5349 method. The latent periods were 4.5 and 10.1 years at 10% and 50% of farmer group, respectively. Also, under ACGIH (American Conference of Governmental Industrial Hygienists) standard, daily vibration exposure duration at 6.7 m/s2 of vibration acceleration has to be less than 4 hours. Therefore, education that maximum working hours should be less than 4 continuous hours is necessary for the operators of walking-type cultivators.

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.

A Development of a Dynamic Load Function for a composite Deek Floor System (합성데크를 사용한 바닥판의 동적하중 이론식 개발)

  • 김태윤
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.127-134
    • /
    • 1999
  • Vibration problem occurring at the metal deck floor system not only reduces the serviceability of a building but also reduces the usability of a floor system. Most problem occurring at the metal deck floor results from the human movement such as walking and running. However the vibration induced by running does not occur continuously except the special case. therefore the floor vibration due to walking was only considered on this paper,. Vibration occurring due to human walking was measured and the corresponding load function was derived through the Fast Fourier Transform(FFT)

  • PDF

Vibration performance characteristics of a long-span and light-weight concrete floor under human-induced loads

  • Cao, Liang;Liu, Jiepeng;Zhou, Xuhong;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.349-357
    • /
    • 2018
  • An extensive research was undertaken to study the vibration serviceability of a long-span and light-weight floor subjected to human loading experimentally and numerically. Specifically, heel-drop test was first conducted to capture the floor's natural frequencies and damping ratios, followed by jumping and running tests to obtain the acceleration responses. In addition, numerical simulations considering walking excitation were performed to further evaluate the vibration performance of a multi-panel floor under different loading cases and walking rates. The floor is found to have a high frequency (11.67 Hz) and a low damping ratio (2.32%). The comparison of the test results with the published data from the 1997 AISC Design Guide 11 indicates that the floor exhibits satisfactory vibration perceptibility overall. The study results show that the peak acceleration is affected by the walking path, walking rate, and adjacent structure. A simpler loading case may be considered in design in place of a more complex one.

Parameter Analysis and Modeling of Walking Loads (보행하중의 매개변수 분석 및 모형화)

  • 이동근;김기철;최균효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.459-466
    • /
    • 2001
  • The floor vibration aspect for building structures which are in need of large open space are influenced by the interrelation between natural frequency and working loads. Structures with a long span and low natural frequency have a higher possibility of experiencing excessive vibration induced by dynamic excitation such as human activities. These excessive vibrations make the residents uncomfortable and the serviceability deterioration. Need formulation of loads data through actual measurement to apply walking loads that is form of dynamic load in structure analysis. The loads induced by human activities were classified into two types. First type is in place loads. the other type is moving loads. A series of laboratories experiments had been conducted to study the dynamic loads induced by human activities. The earlier works were mainly concerned to parameters study of dynamic loads. In this Paper, the walking loads have been directly measured by using the measuring plate in which two load cells were placed, the parameters, the load-time history of walking loads, and the dynamic load factors have been analyzed. Moreover, the shape of the harmonic loads which were gotten by decomposition the walking loads have been analyzed , and the walking loads modeling have been carried out by composition these harmonic loads derived by functional relation.

  • PDF