• Title/Summary/Keyword: walking on the slope

Search Result 91, Processing Time 0.028 seconds

Comparison between Rectus Femoris and Tibialis Anterior in Terms of the Levels of Activity Varying Depending on Walking Patterns (forward and backward) and Varied Treadmill Slopes (전.후방보행 방법과 트레드밀 각도변화에 따른 넙다리곧은근과 앞정강이근의 활성도 비교)

  • Kim, Eun-Young;Lee, Sung-Byiung;Jeon, Beon-Su;Kwon, Hyeok-Soo;Yu, Dal-Yeong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.76-81
    • /
    • 2010
  • Purpose: This study examined how the degrees of muscle activity of Rectus Femoris and Tibialis Anterior during the four phases of walking vary according to three different treadmill slopes of $0^0$, $7^0$, and $15^0$. Methods: Subjects were 14 randomly selected healthy students attending G University in Seoul, Korea who had never had articular problems with lower limb and had no difficulties walking at the time of study. Results: 1) With respect to Rectus Femoris, in every phase of both forward and backward walking, there were significant differences among all of the slope degrees (p <.05), while the activity increased with increased slope degrees in every phase of backward walking. 2) For Tibialis Anterior, only in P2 and P3 of both forward and backward walking there were significant differences in every slope (p <.05). Conclusion: Both Rectus Femoris and Tibialis Anterior were found to be more active during backward walking compared to backward walking. In addition, the activity degree of Rectus Femoris was high between the early part of two foot support phase and the early part of one foot support phase, whereas that of Tibialis Anterior was high between the early part of one foot support phase and the latter part of both foot support phase.

  • PDF

CPG-based Adaptive Walking for Humanoid Robots Combining Feedback (피드백을 결합한 CPG 기반의 적응적인 휴머노이드 로봇 보행)

  • Lee, Jaemin;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2014
  • The paper introduces dynamic generation technique of foot trajectories for humanoid robots using CPG(Central Pattern Generator) and proposes adaptive walking method for slope terrains combining a feedback network. The proposed CPG based technique generates the trajectory of foot in the Cartesian coordinates system and it can change the step length adaptively according to the feedback information. To cope with variable slope terrains, the sensory feedback network in the CPG are designed using the geometry relationship between foot position and body center position such that humanoid robot can maintain its stability. To demonstrate the effectiveness of the proposed approach, the experiments on humanoid robot Nao are executed in the Webot simulation. The performance and motion features of the CPG based approach are compared and analyzed focusing on the adaptability in slope terrains.

The Effectiveness Verification of Whole-body Vibration through Comparative analysis of Muscle activity for Whole-body Vibration Exercise, Walking and Running (전신진동운동, 보행 및 런닝과의 근육활성량 및 근 발현 특성 비교 분석을 통한 전신진동운동 효과검증)

  • Moon, Young Jin;Cho, Won Jun
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.59-63
    • /
    • 2021
  • Objective: Through comparative analysis of muscle activity for whole-body vibration, walking and running movements, it is to verify the training effect of whole-body vibration exercise in terms of amount of exercise and muscle activity characteristics. Method: Flat ground walking and slope walking (10 degrees) at a speed of 5 km/h, flat ground running and slope running (10 degrees) at a speed of 11 km/h for running were performed on treadmill, and squats were maintained at 12 Hz, 20 Hz, and 29 Hz conditions on Whole body vibration exercise equipment (Galileo). Muscle activity was analyzed through EMG analysis device for one minute for each condition. Results: The Anterior Tibialis and Erector Spinae show greater exercise effect in whole-body vibration than walking and running. The Rectus Femoris, Biceps Femoris, and Gluteus Maximus have the best effect of exercise in flat running. Whole-body vibration exercise showed greater muscle activation effect as the frequency increased, and exercise effect similar to walking during the same exercise time. Conclusion: The amount of exercise through Whole-body vibration exercise was similar to that of walking exercise, and the Anterior Tibialis and Erector Spinae shows better exercise effect than walking and running.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.

Walking Will Recognition Algorithm for Walking Aids Based on Torque Estimation (모터 토크 추정을 통한 보행보조기의 의지파악 알고리즘)

  • Kong, Jung-Shik
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 2010
  • This paper deals with the recognition algorithm of walking will based on torque estimation. Recently, concern about walking assistant aids is increasing according to the increase in population of elder and handicapped person. However, most of walking aids don't have any actuators for its movement. So, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Unfortunately it is difficult to control aids during its movement, because it is not easy to recognize user's walking will. Many kinds of methods are proposed to recognize of user's walking will. In this paper, we propose walking will recognition algorithm by using torque estimation from wheels. First, we measure wheel velocity and voltage at the walking aids. From these data, external forces are extracted. And then walking will that is included by walking velocity and direction is estimated. Here, all the processes are verified by simulation and experiment in the real world.

walking mechanism design based on Jansen mechanism for moving slope/ obstacle/ special surface (경사/ 장애물/ 특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계)

  • Kim, So Won;Park, Young Cheol;Jeon, Eun Seo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.463-466
    • /
    • 2016
  • This study has designed a walking mechanism that is able to pass by a variety of environments, such as slope, obstructions, special surface in there, the mechanism suggested by Janssen has shown an ideal bridge structure made of 11 joints. V in the study, these programs are use that is m-sketch, m-designer, Janssen mechanism optimization solver for the optimum design of m-sketch, 3D component reflecting the given strip dimension is used because there is a limit in the given. As a result, a stable mechanism for walking could be implemented.

  • PDF

A Study about Stable Walking and Balancing of Biped Robot in a Slope (이족로봇의 경사면 균형 유지와 보행에 관한 연구)

  • Oh, Sung-Nam;Yun, Dong-Woo;Son, Young-Ik;Kim, Kab-Il;Lim, Seung-Chul;Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.542-544
    • /
    • 2006
  • This paper aims to provide a way to improve dynamic stability of biped robots against undesirable disturbances and in a slope. By using an angular velocity sensor and an acceleration sensor on its waist, we can make a medium-sized biped robot walk stably in a slope against impulsive disturbances. In addition, it is possible for the robot to walk stably in an unknown slope. The measured signals from the sensor are used for compensating the reference angles of ankle, knee, and pelvis joints. Some experiments show that the stability of the robot is much enhanced by using cheat sensors and a simple algorithm. This work helps bided robots walk more stably in real environments.

  • PDF

Influence of Perceived Neighborhood Walking Environment on Satisfaction for the Elderly (노인의 거주지 주변 보행환경 인식이 만족도에 미치는 영향)

  • Park, Young-Eun;Jung, Sung-Gwan;Lee, Woo-Sung
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1111-1121
    • /
    • 2019
  • The purpose of this study is to analyze the effect of perceived walking environment around neighborhood on satisfaction for old adults in Daegu. The study was conducted using 407 questionnaires were collected through the survey. The walking environment was categorized into accessibility to neighborhood walking facilities and walking environment around path. Regarding perception of walking accessibility, access to 'public transit stops' and to 'medical facilities' was relatively high. For walking environment, 'pavement condition', 'continuity of sidewalk', and 'slope of sidewalk' were rated relatively high. Multiple regression analysis after factor analysis of walking environment variables showed that religious and convenient facilities, park and leisure facilities, and medical and welfare facilities had a significant effect on satisfaction in walking accessibility. For walking environment the convenience for walking, safety for walking, and amenities for walking had a significant effect on satisfaction. The findings from this study can be used for improving the walking environment for old adults.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

The Difference in the Smoothness of the Movement according to Shoe, Velocity, and Slope during Walking (보행시 신발, 속도, 경사도에 따른 동작의 부드러움 차이)

  • Choi J.S.;Tack G.R.;Yi J.H.;Lee B.S.;Chung S.C.;Sohn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.169-170
    • /
    • 2006
  • The purpose of this study was to evaluate the smoothness of the gait pattern according to shoe, walking speed, and slope. Eleven male university students used three types(running shoes, mounting climbing boots, elevated forefoot walking shoes) of shoes at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2.0, 2.11, 2.33m/s) and gradients (0, 3, 6, 10%) on a treadmill. Three-dimensional motion analysis (Motion Analysis Corp, Santa Rosa, CA, USA) was conducted with 4 Falcon high speed cameras. The results showed that elevated forefoot walking shoes had the lowest value of normalized jerk at the heel, which means that elevated forefoot walking shoes had the smoothest walking pattern at the heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass (COM) at most walking speeds, which means that the smoothness of gait pattern at the center of mass is the lowest for the elevated forefoot walking shoes. This movement at the COM might even have a beneficial effect of activating muscles in the back and abdomen more than other shoes.

  • PDF