• Title/Summary/Keyword: wake-up receiver

Search Result 11, Processing Time 0.023 seconds

A Sensor nodes' Residual Energy based Wake-up Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 센서 노드의 잔여 에너지 기반 Wake-up 제어 메커니즘)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2017
  • In dense deployments of sensor nodes in Wireless Sensor Networks, the MAC protocol has challenges to solve problems such as reducing delivery delay and reducing energy consumption. To solve these problems lots of protocols are suggested. This paper proposed a sensor nodes' residual energy based wake-up control mechanism, in which each node decides whether it wakes up or stays in sleep mode to save energy consumption by reducing unnecessary idle listening. The main idea of the wake-up control mechanism is to save node's energy consumption. The proposed wake-up control mechanism is based on the RI-MAC protocol, which is one of the receiver-initiated MAC protocols. A receiver node in the proposed mechanism periodically wakes up and broadcasts a beacon signal based on the energy status of the node. A receiver node also adjusts wake-up period based on the traffics. Results have shown that the proposed MAC protocol outperformed RI-MAC protocol in the terms of energy consumption.

Wake-Up Receiver System Design Using the DGS Rectenna (DGS Rectenna를 이용한 Wake-Up 수신기 시스템 설계)

  • Choi, Tae-Min;Lee, Seok-Jae;Lee, Hee-Jong;Lim, Jong-Sik;Ahn, Dal;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.377-383
    • /
    • 2012
  • In this paper, a new design of a planar rectenna system and its application to a wake-up receiver operating for incoming signal with a specified frequency are proposed for low-power sensor system applications. The planar and integrable rectenna system is designed with DGSs(Defected Ground Structures) at 2.4 GHz. The DGSs reject harmonic components of 4.8 and 7.2 GHz and eliminate 2.4 GHz fundamental frequency for DC-path filtering. The rectenna system has been evaluated for the conversion output voltages, and applied to the switching of a power supply at the low-power sensor receivers. The proposed system has been evaluated for the wake-up performance by testing a lownoise amplifier operation. From the experimental results, the proposed receiver system presents excellent operation performances.

An implementation of wake-up method for T-DMB by android C2DM (안드로이드 C2DM을 이용한 T-DMB 자동인지 기능 구현)

  • Jeon, Inchan;Choi, Seong Jong;Lee, Yong-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.283-290
    • /
    • 2012
  • In this paper, a system for wake-up method for T-DMB AEAS is introduced. Wake-up function is important in emergency alert service. But there was no AEAS receiver that has the method. Google C2DM is efficient method for wake-up in android platform. So this paper suggests wake-up method in android smartphone with T-DMB by C2DM. This method will be an alternative plan until native broadcasting wake-up technology.

Adaptive Power Saving Mechanism of Low Power Wake-up Receivers against Battery Draining Attack (배터리 소모 공격에 대응하는 저전력 웨이크업 리시버의 적응형 파워 세이빙 메커니즘)

  • So-Yeon Kim;Seong-Won Yoon;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.393-401
    • /
    • 2024
  • Recently, the Internet of Things (IoT) has been widely used in industries and daily life that directly affect human safety, life, and assets. However, IoT devices, which need to meet low-cost, lightweight, and low-power requirements, face a significant problem of shortened battery lifetime due to battery draining attacks and interference. To solve this problem, the 802.11ba standard for the Wake-up Receiver (WuR) has emerged, this feature is playing a crucial role in minimizing energy consumption. However, the WuR protocol did not consider security mechanisms in order to reduce latency and overhead. Therefore, in this study, anAdaptive Power Saving Mechanism (APSM) is proposed for low-power WuR to counter battery draining attacks. APSM can minimize abnormally occurring power consumption by exponentially increasing power-saving time in environments prone to attacks. According to experimental results, the proposed APSM improved energy consumption efficiency by a minimum of 13.77% compared to the traditional Legacy Power Saving Mechanism (LPSM) when attack traffic ratio is 10% or more of the total traffic.

RIX-MAC: An Energy-Efficient Receiver-Initiated Wakeup MAC Protocol for WSNs

  • Park, Inhye;Lee, Hyungkeun;Kang, Seokjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1604-1617
    • /
    • 2014
  • This paper proposes RIX-MAC (Receiver-Initiated X-MAC), a new energy-efficient MAC protocol based on an asynchronous duty cycling. RIX-MAC improves energy efficiency through utilizing short preambles and adopting the receiver-initiated approach, where RIX-MAC minimizes sender nodes' energy consumption by enabling transmitters to predict receiver nodes' wake-up times. It also reduces receiver nodes' energy consumption by decreasing the number of control frames. We use the network simulator to evaluate RIX-MAC's performance. Compared to the prior asynchronous duty cycling approaches of X-MAC and PW-MAC, the proposed protocol shows a remarkable improvement in energy-efficiency and end-to-end delay.

Power Consumption Analysis of Asynchronous RIT mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT 모드 MAC의 전력소모 분석)

  • Dongwon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.23-28
    • /
    • 2023
  • In a wireless smart utility network communication system, an asynchronous low power MAC is standardized and used according to IEEE 802.15.4e. An asynchronous MAC called RIT (Receiver Initiated Transmission) has a characteristic in which delay time and power consumption are greatly affected by a check-in interval (RIT period). By waking up from sleep every check-in interval and checking whether there is data to be received, power consumption in the receiving end can be drastically reduced, but power consumption in the transmitting end occurs due to an excessive wakeup sequence. If an excessive wake-up sequence is reduced by shortening the check interval, power consumption of the receiving end increases due to too frequent wake-up. In the RIT asynchronous MAC technique, power consumption performance according to traffic load and operation of check-in interval is analyzed and applied to Wi-SUN construction.

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

EEPB-MAC: Energy Efficient & Priority-Based MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 수확 무선 센서 네트워크에서 에너지 효율 및 우선순위 기반의 MAC 프로토콜)

  • Kim, Seong-Cheol;Jeon, Jun-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.755-761
    • /
    • 2013
  • Medium access control (MAC) protocols for wireless sensor networks make sensor nodes on state for energy-efficiency only when necessary. In this paper we present an energy efficient priority-based MAC protocol for energy-harvesting Wireless Sensor Networks (WSNs). For support priority-based packet transmission the proposed EEPB-MAC protocol uses the modified IEEE 802.15.4 beacon frames including priority bit, sender node address, and NAV value fields. A receiver node periodically wakes up, receives sender beacon frames, selects data sending sender, and broadcasts a beacon frame containing the selected sender's address. A receiver node selects sender node according to sender's data priority. A receiver nodes also adjust wake up period based on their energy states. Hence, the energy consumption of receiver node can be minimized. Through simulations and analytical analysis, we evaluate the performance of our proposed the EEPB-MAC protocol and compare it against the previous MACs. Results have shown that our protocol outperforms other MAC in terms of energy consumption, higher priority packet delivery delay.

Design, Analysis and Implementation of Energy-efficient Broadcast MAC Protocols for Wireless Sensor Networks

  • Kang, Young-Myoung;Lim, Sang-Soon;Yoo, Joon;Kim, Chong-Kwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1113-1132
    • /
    • 2011
  • In wireless sensor networks (WSNs), most energy saving asynchronous MAC protocols are custom tailored for unicast communications only. However, broadcast protocols are very commonly used in WSNs for a variety of functionalities, such as gathering network topology information, event monitoring and query processing. In this paper, we propose a novel low-power asynchronous broadcast MAC protocol called Alarm Broadcast (A-CAST). A-CAST employs the strobe preamble that specifies the residual waiting time for the following data transmission. Each receiver goes back to sleep upon hearing the strobe preamble for the residual time duration, to conserve energy and to wake up just before data transmission starts. We compute the energy consumption of A-CAST via rigorous mathematical analysis. The analytic results show that A-CAST outperforms B-CAST, a simple broadcast extension of the well-known B-MAC. We also implement A-CAST on sensor motes and evaluated its performance through real experiments. Our experimental results show that A-CAST reduces the energy consumption by up to 222% compared to the previously proposed protocols.

Power Management Circuit for Solar cell Powered Wireless Sensor Nodes (태양전지를 전원으로 사용하는 무선센서 노드를 위한 전원관리회로)

  • Kang, Sung-Muk;Park, Kyung-Jin;Kim, Ho-Seong;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1925_1926
    • /
    • 2009
  • This paper describes a novel power management circuitry for reducing the sleeping mode power dissipation. Based on the proposed power management circuitry, the sensor module can be activated by RF wake-up signal, perform designated process and deactivate itself. There is absolutely no power dissipation at the sleeping mode which takes almost time of the operation. The temperature sensor module using solar cell as energy source has been fabricated and tested. Experimental results show that the sensor module with 3300 ${\mu}$F for storage capacitor can transmits RF temperature data to a receiver at a distance of 20 m every 15 second in a normal indoor light condition and keep the capacitor voltage over 9 V. And the sensor module can operate 100 times with a single charging, that means it is possible for the sensor module to transmit every 5 minute for 8 hours without light or any other power input during the night time.

  • PDF