• Title/Summary/Keyword: wake topology

Search Result 14, Processing Time 0.018 seconds

A hybrid method for predicting the dynamic response of free-span submarine pipelines

  • Li, Tongtong;Duan, Menglan;Liang, Wei;An, Chen
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.363-375
    • /
    • 2016
  • Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan's wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.

Development of Computational Methods for Viscous Flow around a Commercial Ship Using Finite-Volume Methods (유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.19-30
    • /
    • 2000
  • A finite-volume method is developed to solve turbulent flows around modern commercial hull forms with bow and stern bulbs. The RANS equations are solved. The cell-centered finite-volume method employs QUICK and central difference scheme for convective and diffusive flux discretization, respectively. The SIMPLEC method is adopted for the velocity-pressure coupling. The developed numerical methods are applied to calculate turbulent flow around KRISO 3600TEU container ship. Surface meshes are generated into five blocks: bow and stern bulbs, overhang, fore and afterbody. 3-D field grid system with O-H topology is generated using elliptic grid generation method. Surface friction lines and wake distribution at propeller plane is compared with experiment. The calculated results show that the present method can be used to predict flow around a modern commercial hull forms with bulbs.

  • PDF

An Evaluation of Data Delivery Mechanisms in Clustered Sensor Networks (클러스터 기반 센서 망에서 데이터 전달 방법들의 성능 분석)

  • Park Tae-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.304-310
    • /
    • 2006
  • This paper evaluates the performance of three types of data delivery mechanisms in clustered sensor networks, as a basic research to develop an energy efficient topology management scheme. In the first mechanism, one node per cluster(clusterhead) turns on its radio(or wakes up) to transmit and receive RTS/CTS/DATA/ACK messages, but in the second one, k nodes per cluster wake up and participate in the message exchange. In the last mechanism, clusterheads turn on the radio to exchange RTS/CTS messages, and if a clusterhead receives RTS containing its cluster m as a destination, it makes k nodes in the cluster hun on the radio to receive DATA and transmit ACK. Through simulation, we show the energy consumption of the three types of data delivery mechanisms as functions of the number of active nodes per cluster, offered load, and packet loss probability.

A Study on Thrust Generation by Simultaneous Flapping Airfoils in Tandem Configuration (동시에 플래핑하는 직렬배치 익형의 추력 생성 연구)

  • Lee, Gwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In this study, the thrust generation by simultaneous flapping airfoils in tandem configuration is parametrically studied with respect to flapping frequency, amplitude and relative location. Navier-Stokes solver with overset grid topology is employed to calculate the unsteady flowfields. The computation results indicate that when the two airfoils stroke in-phase - flapping phase lag is zero - the maximum propulsive efficiency and thrust can be obtained for most frequency and amplitude range. At a flapping amplitude of 0.2 chord and a reduced frequency of 0.75, the propulsive efficiency of aft airfoil is enhanced by about 37 % compared with that of forward airfoil. However, if flapping frequency exceeds some critical value, the strength of the leading edge vortex of aft airfoil is fortified by the trailing edge vortex of the forward airfoil, resulting in poor propulsive efficiency. It is also found that out-of-phase flapping has relatively low propulsive efficiency and thrust since vortical wake of the forward airfoil interacts with the leading edge vortex of aft airfoil in the unfavorable fashion. The total thrust and propulsive efficiency are shown to decrease with the horizontal miss distance of the aft airfoil. On the contrary, the vertical miss distance has little effect on the overall aerodynamic performance.