• Title/Summary/Keyword: wafer-level

Search Result 287, Processing Time 0.032 seconds

Wafer Level Package Using Glass Cap and Wafer with Groove-Shaped Via (유리 기판과 패인 홈 모양의 홀을 갖는 웨이퍼를 이용한 웨이퍼 레벨 패키지)

  • Lee, Joo-Ho;Park, Hae-Seok;Shin, Jea-Sik;Kwon, Jong-Oh;Shin, Kwang-Jae;Song, In-Sang;Lee, Sang-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2217-2220
    • /
    • 2007
  • In this paper, we propose a new wafer level package (WLP) for the RF MEMS applications. The Film Bulk Acoustic Resonator (FBAR) are fabricated and hermetically packaged in a new wafer level packaging process. With the use of Au-Sn eutectic bonding method, we bonded glass cap and FBAR device wafer which has groove-shaped via formed in the backside. The device wafer includes a electrical bonding pad and groove-shaped via for connecting to the external bonding pad on the device wafer backside and a peripheral pad placed around the perimeter of the device for bonding the glass wafer and device wafer. The glass cap prevents the device from being exposed and ensures excellent mechanical and environmental protection. The frequency characteristics show that the change of bandwidth and frequency shift before and after bonding is less than 0.5 MHz. Two packaged devices, Tx and Rx filters, are attached to a printed circuit board, wire bonded, and encapsulated in plastic to form the duplexer. We have designed and built a low-cost, high performance, duplexer based on the FBARs and presented the results of performance and reliability test.

Overview of High Performance 3D-WLP

  • Kim, Eun-Kyung
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.347-351
    • /
    • 2007
  • Vertical interconnect technology called 3D stacking has been a major focus of the next generation of IC industries. 3D stacked devices in the vertical dimension give several important advantages over conventional two-dimensional scaling. The most eminent advantage is its performance improvement. Vertical device stacking enhances a performance such as inter-die bandwidth improvements, RC delay mitigation and geometrical routing and placement advantages. At present memory stacking options are of great interest to many industries and research institutes. However, these options are more focused on a form factor reduction rather than the high performance improvements. In order to improve a stacked device performance significantly vertical interconnect technology with wafer level stacking needs to be much more progressed with reduction in inter-wafer pitch and increases in the number of stacked layers. Even though 3D wafer level stacking technology offers many opportunities both in the short term and long term, the full performance benefits of 3D wafer level stacking require technological developments beyond simply the wafer stacking technology itself.

Statistical Design of Experiments and Analysis: Hierarchical Variance Components and Wafer-Level Uniformity on Gate Poly-Silicon Critical Dimension (통계적 실험계획 및 분석: Gate Poly-Silicon의 Critical Dimension에 대한 계층적 분산 구성요소 및 웨이퍼 수준 균일성)

  • Park, Sung-min;Kim, Byeong-yun;Lee, Jeong-in
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • Gate poly-silicon critical dimension is a prime characteristic of a metal-oxide-semiconductor field effect transistor. It is important to achieve the uniformity of gate poly-silicon critical dimension in order that a semiconductor device has acceptable electrical test characteristics as well as a semiconductor wafer fabrication process has a competitive net-die-per-wafer yield. However, on gate poly-silicon critical dimension, the complexity associated with a semiconductor wafer fabrication process entails hierarchical variance components according to run-to-run, wafer-to-wafer and even die-to-die production unit changes. Specifically, estimates of the hierarchical variance components are required not only for disclosing dominant sources of the variation but also for testing the wafer-level uniformity. In this paper, two experimental designs, a two-stage nested design and a randomized complete block design are considered in order to estimate the hierarchical variance components. Since gate poly-silicon critical dimensions are collected from fixed die positions within wafers, a factor representing die positions can be regarded as fixed in linear statistical models for the designs. In this context, the two-stage nested design also checks the wafer-level uniformity taking all sampled runs into account. In more detail, using variance estimates derived from randomized complete block designs, Duncan's multiple range test examines the wafer-level uniformity for each run. Consequently, a framework presented in this study could provide guidelines to practitioners on estimating the hierarchical variance components and testing the wafer-level uniformity in parallel for any characteristics concerned in semiconductor wafer fabrication processes. Statistical analysis is illustrated for an experimental dataset from a real pilot semiconductor wafer fabrication process.

A novel wafer-level-packaging scheme using solder (쏠더를 이용한 웨이퍼 레벨 실장 기술)

  • 이은성;김운배;송인상;문창렬;김현철;전국진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.5-9
    • /
    • 2004
  • A new wafer level packaging scheme is presented as an alternative to MEMS package. The proof-of-concept structure is fabricated and evaluated to confirm the feasibility of the idea for MEMS wafer level packaging. The scheme of this work is developed using an electroplated tin (Sn) solder. The critical difference over conventional ones is that wafers are laterally bonded by solder reflow after LEGO-like assembly. This lateral bonding scheme has merits basically in morphological insensitivity and its better bonding strength over conventional ones and also enables not only the hermetic sealing but also its electrical interconnection solving an open-circuit problem by notching through via-hole. The bonding strength of the lateral bonding is over 30 Mpa as evaluated under shear and the hermeticity of the encapsulation is 2.0$\times10^{-9}$mbar.$l$/sec as examined by pressurized Helium leak rate. Results show that the new scheme is feasible and could be an alternative method for high yield wafer level packaging.

  • PDF

Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions (포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가)

  • Park, Sung-Min;Kim, Young-Sig
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.

Effect of pH level and slurry particle size on the chemical mechanical planarization of langasite crystal wafer (pH level 및 slurry 입도가 langasite wafer의 chemical mechanical planarization에 미치는 영향)

  • Cho Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Effects of pH level and slurry particle size on material removal rate and planarization of langasite single crystal wafer have been examined. Higher material removal rate was obtained with lower pH level slurries while the planarization was found to be determined by average particle size of colloidal silica slurries. Slurries containing 0.045 ㎛ amorphous silica particles showed the best polishing effect without any scratches on the surface. Effective particle number has a strong effect on the surface planarization and the removal rate, so that the lower effective particle numbers produced low removal rate but the better planarization results.

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.