• Title/Summary/Keyword: vulnerability map

Search Result 92, Processing Time 0.021 seconds

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.

Guidelines for the Construction of Vulnerability Map of Fire in Seoul (서울시 화재위험지도 구축방안에 관한 연구)

  • Kang, Young-Ok;Park, Mi-Ra
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.1-12
    • /
    • 2005
  • In the area of disaster management, we have more focused on the rapid response and recovery, but preventive approach for disaster is becoming more and more important. For mitigation of disasters, we need to analyze the vulnerable area according to each disaster, and need to manage those area systematically. In this research, we selected the fire as a type of disaster, developed guideline of construction of vulnerability map of fire, and built the vulnerability map of fire in Changshin-Dong, Jongro-Gu, Seoul as a case study area. The vulnerability map of fire can be applied to grasp the vulnerable area in advance and manage it systematically. In addition, it can also be applied in the landuse planning and the rearrangement of infrastructure for the mitigation of disaster when we build detail city planning.

An Estimation of Landslide's Vulnerability by Analysis of Static Natural Environmental Factors with GIS (GIS를 이용한 정적 자연환경인자의 분석에 의한 산사태 취약성 평가)

  • Yang, In-Tae
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.61-72
    • /
    • 2005
  • The landslide risk assessment process consists of hazard risk assessment and vulnerability analysis. landslide hazard risk is location dependent. Therefore, maps and spatial technologies such as GIS are very important components of the risk assessment process. This paper discusses the advantages of using GIS technology in the risk assessment process and illustrates the benefits through case studies of live projects undertaken. The goal of this study is to generate a map of landslide vulnerability map by analysis of static natural factors with GIS. A simple and efficient algorithm is proposed to generate a landslide potentialities map from DEM and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, vegetation are defined. The weight values for landslide potentialities are calculated from AHP method. Slope and slope-direction are extracted from DEM, and soil informations are extracted from digital soil map. Also, vegetation informations are extracted from digital vegetation map. Finally, as overlaying, landslide potentialities map is made out, and it is verified with landslide place.

  • PDF

Groundwater pollution risk mapping using modified DRASTIC model in parts of Hail region of Saudi Arabia

  • Ahmed, Izrar;Nazzal, Yousef;Zaidi, Faisal
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • The present study deals with the management of groundwater resources of an important agriculture track of north-western part of Saudi Arabia. Due to strategic importance of the area efforts have been made to estimate aquifer proneness to attenuate contamination. This includes determining hydrodynamic behavior of the groundwater system. The important parameters of any vulnerability model are geological formations in the region, depth to water levels, soil, rainfall, topography, vadose zone, the drainage network and hydraulic conductivity, land use, hydrochemical data, water discharge, etc. All these parameters have greater control and helps determining response of groundwater system to a possible contaminant threat. A widely used DRASTIC model helps integrate these data layers to estimate vulnerability indices using GIS environment. DRASTIC parameters were assigned appropriate ratings depending upon existing data range and a constant weight factor. Further, land-use pattern map of study area was integrated with vulnerability map to produce pollution risk map. A comparison of DRASTIC model was done with GOD and AVI vulnerability models. Model validation was done with $NO_3$, $SO_4$ and Cl concentrations. These maps help to assess the zones of potential risk of contamination to the groundwater resources.

Development of integrated disaster mapping method (II) : disaster mapping with risk analysis (통합 재해지도 작성 기법 개발(II) : 리스크 분석을 적용한 재해지도 작성)

  • Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.85-97
    • /
    • 2022
  • In this study, a method for an integrated flood risk mapping was proposed that simultaneously considers the flood inundation map indicating the degree of risk and the disaster vulnerability index. This method creates a new disaster map that can be used in actual situations by providing various and specific information on a single map. In order to consider the human, social and economic factors in the disaster map, the study area was divided into exposure, vulnerability, responsiveness, and recovery factors. Then, 7 indicators for each factor were extracted using the GIS tool. The data extracted by each indicator was classified into grades 1 to 5, and the data was selected as a disaster vulnerability index and used for integrated risk mapping by factor. The risk map for each factor, which overlaps the flood inundatoin map and the disaster vulnerability index factor, was used to establish an evacuation plan by considering regional conditions including population, assets, and buildings. In addition, an integrated risk analysis method that considers risks while converting to a single vulnerability through standardization of the disaster vulnerability index was proposed. This is expected to contribute to the establishment of preparedness, response and recovery plans for providing detailed and diverse information that simultaneously considers the flood risk including social, humanistic, and economic factors.

Division of Small Unit Based on a Nationwide Disaster Vulnerability Map (전국단위 재해위험도에 기초한 급경사지 재해의 단위권역 구분)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.927-932
    • /
    • 2010
  • This study made a nationwide metropolitan region map on the basis of disaster vulnerability and administrative boundary, and based on it, it divided small-sized regions and constructed disaster history of each region. For the disaster vulnerability, the study wrote slope, aspect, curvature, wetness index, and drainage density, compared and analyzed regions with disaster and geomorphic elements to distinct the factor with high correlations, and based on it, it divided small-sized regions for forecasting and warning system of middle regions(Gangwon province, Chungchung province, and Jeolla province). Through the method, Gangwon region were divided into 4 small-sized regions, Chungchung into 5 small-sized regions, and Jeolla into 6 small-sized regions.

  • PDF

Assessment of Groundwater Contamination Vulnerability in Miryang City, Korea using Advanced DRASTIC and fuzzy Techniques on the GIS Platform (개선된 DRASTIC 기법과 퍼지기법을 이용한 밀양지역 지하수오염 취약성 평가)

  • Chung, Sang Yong;Elzain, Hussam Eldin;Senapathi, Venkatramanan;Park, Kye-Hun;Kwon, Hae-Woo;Yoo, In Kol;Oh, Hae Rim
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.26-41
    • /
    • 2018
  • The purpose of this study is to improve the Original DRASTIC Model (ODM) for the assessment of groundwater contamination vulnerability on the GIS platform. Miryang City of urban and rural features was selected for the study area to accomplish the research purpose. Advanced DRASTIC Model (ADM) was developed adding two more DRASTIC factors of lineament density and landuse to ODM. The fuzzy logic was also applied to ODM and ADM to improve their ability in evaluating the groundwater contamination vulnerability. Although the vulnerability map of ADM was a little simpler than that of ODM, it increased the area of the low vulnerability sector. The groundwater vulnerability maps of ODM and ADM using DRASTIC Indices represented the more detailed descriptions than those from the overlap of thematic maps, and their qualities were improved by the application of fuzzy technique. The vulnerability maps of ODM, ADM and FDM was evaluated by NO3-N concentrations in the study area. It was proved that ADM including lineament density and landuse factors produced a more reliable groundwater vulnerability map, and fuzzy ADM (FDM) made the best detailed groundwater vulnerability map with the significant statistical results.

A GIS-Based Seismic Vulnerability Mapping and Assessment Using AHP: A Case Study of Gyeongju, Korea (GIS 기반 AHP를 이용한 지진 취약성 지도제작 및 평가: 경주시를 중심으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.217-228
    • /
    • 2019
  • In this study, a seismic vulnerability map of Gyeongju city, where the 9.12 Gyeongju earthquake occurred, was produced and evaluated using analytic hierarchy process(AHP) and geographic information system (GIS). Geotechnical, physical, social, structural, and capacity factors were selected as the main indicators and 18 sub-indicators to construct a spatial database. Weights derived using the AHP were applied to the 18 sub-indicators, which generated a vulnerability map of the five main indicators. After weighting the five generated maps, we created seismic vulnerability maps by overlaying each of the five maps. The seismic vulnerability map was classified into five zones, i.e., very high, high, moderate, low, and safe. For seismic vulnerability, the results indicated that 3% of Gyeongju area is characterized as having very high vulnerability, while 19% was characterized as safe. Based on district standards, Jungbu-dong, Hwangoh-dong, Hwangseong-dong, Seonggeon-dong, and Dongcheon-dong were high-risk areas, and Bodeok-dong, Gangdong-myeon, Yangbuk-myeon, Yangnam-myeon, and Oedong-eup were characterized as safe areas. The seismic vulnerability map produced in this study could possibly be used to minimize damage caused by earthquakes and could be used as a reference when establishing policies.

Evaluation of Agricultural Drought Disaster Vulnerability Using Analytic Hierarchy Process (AHP) and Entropy Weighting Method (계층화분석 및 엔트로피 가중치 산정 방법에 따른 농업가뭄재해 취약성 평가)

  • Mun, Young-Sik;Nam, Won-Ho;Yang, Mi-Hye;Shin, Ji-Hyeon;Jeon, Min-Gi;Kim, Taegon;Lee, Seung-Yong;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • Recent drought events in the South Korea and the magnitude of drought losses indicate the continuing vulnerability of the agricultural drought. Various studies have been performed on drought hazard assessment at the regional scales, but until recently, drought management has been response oriented with little attention to mitigation and preparedness. A vulnerability assessment is introduced in order to preemptively respond to agricultural drought and to predict the occurrence of drought. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in South Korea. It was hypothesized that the key 14 items that define agricultural drought vulnerability were meteorological, agricultural reservoir, social, and adaptability factors. Also, this study is to analyze agricultural drought vulnerability by comparing vulnerability assessment according to weighting method. The weight of the evaluation elements is expressed through the Analytic Hierarchy Process (AHP), which includes subjective elements such as surveys, and the Entropy method using attribute information of the evaluation items. The agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. This vulnerability assessment is calculated the vulnerability index based on the weight, and analyze the vulnerable map from 2015 to 2019. The identification of agricultural drought vulnerability is an essential step in addressing the issue of drought vulnerability in the South Korea and can lead to mitigation-oriented drought management and supports government policymaking.

Mapping of Inundation Vulnerability Using Geomorphic Characteristics of Flood-damaged Farmlands - A Case Study of Jinju City - (침수피해 정보를 이용한 농경지의 지형학적 침수취약지도 작성 - 진주시를 사례로 -)

  • Kim, Soo-Jin;Suh, Kyo;Kim, Sang-Min;Lee, Kyung-Do;Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2013
  • The objective of this study was to make a map of farmland vulnerability to flood inundation based on morphologic characteristics from the flood-damaged areas. Vulnerability mapping based on the records of flood damages has been conducted in four successive steps; data preparation and preprocessing, identification of morphologic criteria, calculation of inundation vulnerability index using a fuzzy membership function, and evaluation of inundation vulnerability. At the first step, three primary digital data at 30-m resolution were produced as follows: digital elevation model, hill slopes map, and distance from water body map. Secondly zonal statistics were conducted from such three raster data to identify geomorphic features in common. Thirdly inundation vulnerability index was defined as the value of 0 to 1 by applying a fuzzy linear membership function to the accumulation of raster data reclassified as 1 for cells satisfying each geomorphic condition. Lastly inundation vulnerability was suggested to be divided into five stages by 0.25 interval i.e. extremely vulnerable, highly vulnerable, normally vulnerable, less vulnerable, and resilient. For a case study of the Jinju, farmlands of $138.6km^2$, about 18% of the whole area of Jinju, were classified as vulnerable to inundation, and about $6.6km^2$ of farmlands with elevation of below 19 m at sea water level, slope of below 3.5 degrees, and within 115 m distance from water body were exposed to extremely vulnerable to inundation. Comparatively Geumsan-myeon and Sabong-myeon were revealed as the most vulnerable to farmland inundation in the Jinju.