• Title/Summary/Keyword: vortex stirrer

Search Result 5, Processing Time 0.019 seconds

The Effect of Karman Vortex for Mixing in a Micro-channel with an Oscillating Micro-stirrer (진동 교반기가 있는 미소채널에서 혼합에 대한 Karman 와의 영향)

  • An, Sang-Joon;Maeng, Joo-Sung;Kim, Yong-Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.144-152
    • /
    • 2006
  • In order to consider the effect of Karman vortex for mixing, mixing indices are calculated for 4 models of micro channel flows driven from the combinations of a circular cylinder and a oscillating stirrer. And their results are compared to that of a simple straight micro channel flow(model I). The mixing rate is improved 5.5 times by Karman vortex (model II) and 11.0 times by the stirrer(model III) respectively. In case of successive mixing by the cylinder and the stirrer(model IV), $27\%$ of shortening the channel length for the complete mixing as well as 1.37 times improvement of mixing efficiency then model III. And then, variation of mixing indices are much stable comparing with the others. Thus, it is found that the Karman vortex plays a good role as a pre-mixing method. The D2Q9 Lattice Boltzmann methods are used.

Water Model Experiments of the Mixing Behavior of Polypropylene Particles by Vortex Stirrer (와류식 교반기를 이용한 폴리프로필렌 입자의 혼합 거동에 대한 수모델 연구)

  • Jung, Jaeyong;Lee, Joonho;Lee, Hyoungchul;Ki, Joonseong;Hwang, Jinill
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Water model experiments were carried out to understand the mixing behavior of reducing agents in molten slag through vortex stirrer, which makes use of a gravitational energy to mix reducing agent in the molten slag without imparting artificial energy. At a water flow rate of 6 L/min vortex was not generated, and a stable vortex was formed when the water flow rate was 7 L/min or higher with the present experimental apparatus. Water level increased linearly with increasing the water flow rate. In the upper vortex region, the vertical and horizontal velocities slightly decreased with increasing the water flow rate, whereas those in the lower vortex region increased remarkably. Accordingly, strong mixing behavior was obtained in the lower vortex region. Owing to the strong centrifugal force, particles move downwards with approaching the funnel wall. When 40 grams of polypropylene particles added to the lower vortex, they were instantaneously mixed well.

A Study on the Recycling of Aluminum Chip by Vortex Melting Method (Vortex melting법에 의한 알루미늄 chip의 재활용에 관한 연구)

  • 김정호;김경민;윤의박
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.24-30
    • /
    • 1997
  • The recent trend of recycle of mold scrap is to make high quality secondary ingot which can be used as raw malerial undcr intensive control of scrap. In this study, recycle of aluminum chlp generated atter machinmg process of castings was performed by vortex melting melhod Vortex melting technique was adopted for chip mclting process. The condition far optimal vortcx depth was decided using water mndellng experiment varying the shape, location, rotating speed of stlircr and watcr levcl. Before melting, chips were preheated at room temperame, 200, 300, $ 400^{\circ}C$and then submerged in the mirldle of vortex. The lecovery rale depending on the temperature was examined. As a result vortex depth was influenccd only by shape and rotating speed of stirrer, and the hlghest recovery rate oI 97% was obta~nedw hcn the submerged chip was preheated at $300^{\circ}C.$

  • PDF

Development of an Experimental Method for Understanding the Effects of the Coriolis Force on the Typhoon Genesis and its Movement (전향력이 태풍 발생 및 이동에 미치는 영향을 이해할 수 있는 실험 방법 개발)

  • Wie, Jieun;Jang, Swunghwan;Moon, Byungkwon
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.544-553
    • /
    • 2012
  • A simple experimental method was developed to help students understand the effect of the Coriolis force on typhoon genesis and movement. It consists of rotating tanks with and without a sloping bottom, and a small stirrer to produce cyclonic typhoon-like vortices by locally stirring the water. Vortices were able to last for more than 3 minutes without dissipation in the rotating tank. However, vortices were hardly maintained without rotation, and would rather disappear as soon as the stirrer stopped mixing. Since the dynamical properties of the rotating water are similar to those of the atmosphere influenced by the Coriolis force, the experiments show that the Coriolis force is indispensable to the typhoon genesis. When the tank had both the sloping bottom and rotation, vortices would move in a particular direction. Considering the topographical beta effect, this result indicates that typhoons are drifted not only by the steering wind but also by the meridional gradient of the Coriolis force. The methodology developed in this study, would be useful for both students and teachers to better the relationship between the Coriolis force and the typhoon genesis.