• Title/Summary/Keyword: vortex ring method

Search Result 27, Processing Time 0.024 seconds

Optimization of energy saving device combined with a propeller using real-coded genetic algorithm

  • Ryu, Tomohiro;Kanemaru, Takashi;Kataoka, Shiro;Arihama, Kiyoshi;Yoshitake, Akira;Arakawa, Daijiro;Ando, Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.406-417
    • /
    • 2014
  • This paper presents a numerical optimization method to improve the performance of the propeller with Turbo-Ring using real-coded genetic algorithm. In the presented method, Unimodal Normal Distribution Crossover (UNDX) and Minimal Generation Gap (MGG) model are used as crossover operator and generation-alternation model, respectively. Propeller characteristics are evaluated by a simple surface panel method "SQCM" in the optimization process. Blade sections of the original Turbo-Ring and propeller are replaced by the NACA66 a = 0.8 section. However, original chord, skew, rake and maximum blade thickness distributions in the radial direction are unchanged. Pitch and maximum camber distributions in the radial direction are selected as the design variables. Optimization is conducted to maximize the efficiency of the propeller with Turbo-Ring. The experimental result shows that the efficiency of the optimized propeller with Turbo-Ring is higher than that of the original propeller with Turbo-Ring.

Numerical and Experimental Investigation on the Interaction of Subsurface Vortical Flows with a Free Surface (수면하 보오텍스 유동과 자유표면과의 상호 작용에 관한 연구)

  • Mu-Seok Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.76-85
    • /
    • 1993
  • In order to predict the free surface signature of turbulent ship wakes two things are essential; a basic understanding of the mechanism of turbulent vortical flow/free surface interactions and a mathematical model to accurately predict the signature. The goal of the study described here is both to supplement experimental work to obtain basic understanding, as well as to condense this understanding in a model(or models) that captures the essential phenomena and thus allows predictions. To do so we followed two main paths guided by experimental observations. One is full simulations of the flow using the clavier-Stokes equations. The other is a vortex modeling, where the vortical structures of the flows are approximated by idealized structures, an the interaction assumed to be essentially inviscid. These approaches complement each other. Full simulations are only applicable to small scale phenomena, where the system is simple, and the Reynolds number is low. The vortex modeling, on the other hand, cannot represent essentially viscous aspects of the problem such as the effect of contamination gradient. Obviously, the modeling is what may eventually lead to a prediction method; the full simulations-too limited to mimic all but the simplest circumstances-are to aid and support the construction of realistic models. We address two-dimensional aspects of the vortex/free surface interaction first. Secondly we obtain some basic understanding of the interaction process through an experiment and then talk about several three-dimensional problems hoping to develop a successful prediction model.

  • PDF

A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS (Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

A Dynamic Characteristics of Horizontal Vortex;Experiment and Numerical Analysis on Rotating Effect (수평 보텍스 링의 동적 특성;회전효과에 대한 실험 및 수치해석)

  • Yeo, Chang-Ho;Park, Jae-Hyun;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1466-1471
    • /
    • 2004
  • In this paper, we report the numerical and experimental solutions of the axi-symmetric flows in the axial plane driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are not show to compare well with the experimental results for the case of the Rossby number 3. Because the numerical results calculate on the assumption that vortex flows are axi-symmetric flow on the other hand real experimental results are show asymmetric flow. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a larger background rotation.

  • PDF

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM (직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석)

  • Kim, U-Jin;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.14-21
    • /
    • 2006
  • The unsteady vortex lattice method is used to model twisting and flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various twisting angles and reduced frequency with an amplitude of flapping angle($20^{\circ}$). And the effects of the twisting on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

A Study on the Pressure Distributions of Horn Rudder Operating in Ship's Wake (선미 후류에서 작동하는 혼타의 압력분포에 관한 연구)

  • Do-Sung Kong;Jae-Moon Han;Jae-Moon Lew
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • Hull-propeller-rudder interactions are studied by the iterative computational procedures. Hull effects on the propeller are reflected through the effective velocities computed by the vortex ring method which used the measured nominal wake as input data. A potential based panel method has been developed to solve the propeller-rudder interactions using the obtained effective velocities. Steady flow characteristics around the rudder surface can be obtained by computing the induced velocities on the rudder by the propeller and vice versa are computed by the iterative manner until the converged solutions are obtained. Flow characteristics around the propeller and the rudder are measured by Laser Doppler Velocimetry(L.D.V.) in large cavitation tunnel at Samsung Heavy industries. The gap flow model is adopted to solve the characteristics of the horn rudder. Numerical results are compared with the experimental values and the computed velocity fields and pressure distributions with rudder angle on the horn rudder surface show good agreement with measured ones in large cavitation tunnel.

Identification of Noise Source from Main Steam Line in Power Plant (발전소 주증기 배관 소음 발생 원인 규명)

  • Sohn, M.S.;Lee, J.S.;Lee, S.K.;Lee, W.R.;Lee, S.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • In heavy nuclear power plant, high energy through main steam line is provided to turbine that generate the electric power. Since plant had generated power, high noise has been occurred. Noise make equipments and work environment worse. For finding out the location and the cause of making noise, noise was measured along main steam line at open/close test of Main Steam Isolation Valve (MSIV hereafter). As the result, it was identified that the vortex shedding in the cavity of MSIV is main noise source. The profile change of MSIV seat ring was proposed as the method of noise reduction. After filletting MSIV seat ring, the noise level reduced $10{\sim}20dB$ compared before the change of profile.

  • PDF

The Optimum Design of Flow Characteristics in Fermentation (발효조 내의 유동특성 최적화 설계)

  • 박상규;김기성;양희천
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.117-121
    • /
    • 2001
  • A numerical simulation was conducted to investigate the effect of height position of Rushton type Impeller in the fermentation. The computational method was based on the CFX code. The simulation was performed for 3 height differences(25, 30, 35mm) between Rushton type impeller and bottom of fermentation. The instantaneous flow fields showed that the bulk flow consisted of large scale vortices. However the main flow results showed that the formation of ring vortices above and below the impeller depended on the height of the impeller.

  • PDF

Characteristics for the Lift of Wing by 3-D Panel Method (3차원 패널법에 의한 WING의 양력계산에 관한 연구)

  • 김진석;이승건;김진안
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.31-37
    • /
    • 1994
  • 3-Dimensional panel method is now developed to the level that one can calculate the lift of a three dimensional body with the same accuracy of wind tunnel test and some current codes can consider the boundary layer effects due to the viscosity and unsteady motion in the calculation of lift. This paper is also aimed to develop these kinds of computing programs, and as a beginning, the authors restricted the problems to the steady potential flow cases. The calculation of 3-Dimensional body, wing and tandem wing carried out, using source panel and vortex ring panel. Finally, the interactions between 3-Dimension symmetric body and a wing are also calculated.

  • PDF