• Title/Summary/Keyword: vortex method

Search Result 921, Processing Time 0.025 seconds

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF

Distribution of the Concentration of Fuel Vapor in DI Gasoline Sprays Under Evaporation Condition (증발 조건에서 직분식 가솔린 분무의 증기 농도의 분포)

  • Hwang, S.C.;Choi, D.S.;Cha, K.J.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • The concentration and spatial distribution of vapor phases in DI (Direct Injection) gasoline spray were measured quantitatively by exciplex fluorescence method. Fluorobenzene and DEMA (diethylmethylamine) in a solution of hexane were used as the exciplex-forming dopants. The fluorescence intensity of vapor phase were obtained by ICCD camera with the appropriate filter The relationship between fluorescence intensity and vapor concentration was induced fer the purpose of a quantitative analysis. The 2-D vapor/liquid images of fuel spray were captured under the evaporation condition, and the spatial distribution of vapor concentration was obtained. The spatial distribution of liquid phase had hollow-cone shape. And the vapor phase was widely distributed in the whole spray. The behavior of vapor phase was significantly affected by second flow such as entrainment, vortex, while that of liquid phase was scarcely affected.

  • PDF

Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유동소음의 수치계산)

  • 강호근;김은라
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.

A NUMERICAL STUDY ON THE ROLL LOCK-IN OF A CANARD-CONTROLLED MISSILE WITH FREELY SPINNING TAILFINS (자유회전 테일핀을 갖는 미사일에 대한 Roll Lock-in 현상의 수치적 연구)

  • Yang, Y.R.;Kim, M.S.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.48-55
    • /
    • 2009
  • In this study, roll lock-in phenomena of freely spinning tailfins were investigated by a CFD code. To analyze a motion of freely spinning tailfins, this research use a Chimera method, an Euler code and a 6 degrees of freedom analysis. The numerical results of aerodynamic characteristics and roll rates of a canard-controlled missile with freely spinning tailfins show a good agreement with wind tunnel test results. Using the roll rates calculation result of freely spinning tailfins, roll lock-in phenomena is confirmed. Roll lock-in phenomena and Roll lock-in states can be predicted through effects of the induced vortex of the canards control and the analysis of the rolling moments of tailfins due to the bank angle.

A Numerical Analysis of a Drop Impact on the Liquid Surface (액적의 액막 충돌에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2568-2573
    • /
    • 2008
  • A drop impact on the liquid film/pool generates several phenomena such as the drop floating, bouncing, formation of vortex ring, jetting, bubble entrapment and splashing. These phenomena depend on the impact velocity, the drop size, the drop properties and the liquid film/pool thickness. These parameters can be summarized by four main dimensionless parameters; Weber number, Ohnesorge number, Froude number and non-dimensional film/pool thickness. In the present study, the phenomena of the splashing and bubble entrapment due to the drop impact on the liquid film/pool were numerically investigated by using a Level Set method for the sharp interface tracking of two distinct phases. After the drop impact, the splashing phenomena with the crown formation and spreading were predicted. Under the specific conditions, the bubble entrapment at the base of the collapsing cavity due to the drop impact was also observed. The numerical results were compared to the available experimental data showing good agreements.

  • PDF

Design of 2-Dimensional Blade Section for Prescribed Velocity Distribution by a Vortex Based Panel Method (표면양력판 이론에 의한 요구 속도 분포를 갖는 2차원 날개 단면의 설계)

  • K.J. Cho;G.I. Choi;J.D. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 1991
  • A design method based on the surface vorticity distribution is developed to generate a two-dimensional blade section for prescribed velocity distribution in potential flow. The boundary condition used to determine the strength of vorticity distribution requires that the surface of blade section should be a streamline of the resulting flow. In order to obtain the required final geometry of a two-dimensional blade section, an iterative procedure is used. A computer program is developed and several numerical results are presented.

  • PDF

Articulated Rotor/Aerodynamics Co-Simulation Using FMI Standard (FMI 표준을 활용한 관절형 로터/공력 연계시뮬레이션)

  • Paek, Seung-Kil;Park, Joongyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this research is to develop co-simulation methodology of codes developed in different modeling and simulation environment. We develop aerodynamic FMU(Functional Mock-up Unit) meeting FMI(Functional Mock-up Interface) specification version2 utilizing Legacy FORTRAN aerodynamic code based on unsteady vortex lattice method. It is concluded that making FMU is possible utilizing Legacy code made in any language which can be compiled and linked with object in FMI API coded in C language. This paper explains QTronic's method of using FMU SDK(Software Development Kit) and suggestion for using FORTRAN properly. Finally, we make articulated rotor/aerodynamics co-simulation by integrating aerodynamics FMU and rotor FMU developed by Modelica.

Solution of Unsteady Hydrofoil Problems by Discrete Vortex Method with Application to Fish Propulsion (특이점분포방식(特異點分布方式)에 의한 비정상수중익문제(非正常水中翼問題)에 대(對)한 해석(解析))

  • H.T.,Kim;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.11-27
    • /
    • 1981
  • This paper is prepared to solve the problem of two-dimensional sinusoidal motion of hydrofoil, which can be related not only to the prediction of unsteady forces acting on the marine propeller blade but to the study of aquatic animal's undulatory mode of propulsion. For convenience's shake, this manuscript can be devided into two parts. In the first part, the lift and moment coefficients have been calculated by the method of conformal transformation. In the other part, the thrust and the hydromechanical efficiency have been evaluated, using Lagally's technique having extended to the unsteady case, they also have been compared with the results, which had been obtained by Lighthill[6] and Wu[7] using Prandtl's acceleration potential.

  • PDF

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

An experimental study of flow separation around a circular cylinder with Reynolds number and free stream turbulence intensity variations (Reynolds수와 난류강도의 변화에 따른 실린더 주위 유동 박리점의 거동에 관한 실험적 연구)

  • Im,Yong-Seop;Son, Dong-Gi;Yang, Gyeong-Su;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.889-898
    • /
    • 1998
  • The influences of the Reynolds number and free-stream turbulence intensity on the flow separation behavior around a circular were investigated experimentally. The range of the Reynolds number and turbulence intensity considered are 10,000 ~ 45,000 and 0.3 ~ 6.8%, respectively. Because of ineffectiveness of using time-mean value of hot-film sensor signals in determining the separation location around the cylinder, a new method using phase-difference of hot-film sensor signals with hot-wire being located in shedding vortex is suggested. The validity of the present method is confirmed by the comparison with flow visualization.