• Title/Summary/Keyword: vortex method

Search Result 924, Processing Time 0.029 seconds

Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid

  • Singh, Nishant Kumar;Sarkar, A.;Deo, Anandita;Gautam, Kirti;Rai, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • Weibull distribution with two parameters, shape (k) and scale (s) parameters are used to model the fatigue failure analysis due to periodic vortex shedding of the synovial fluid in knee joints. In order to determine the later parameter, a suitable statistical model is required for velocity distribution of synovial fluid flow. Hence, wide applicability of Weibull distribution in life testing and reliability analysis can be applied to describe the probability distribution of synovial fluid flow velocity. In this work, comparisons of three most widely used methods for estimating Weibull parameters are carried out; i.e. the least square estimation method (LSEM), maximum likelihood estimator (MLE) and the method of moment (MOM), to study fatigue failure of bone joint due to periodic vortex shedding of synovial fluid. The performances of these methods are compared through the analysis of computer generated synovial fluidflow velocity distribution in the physiological range. Significant values for the (k) and (s) parameters are obtained by comparing these methods. The criterions such as root mean square error (RMSE), coefficient of determination ($R^2$), maximum error between the cumulative distribution functions (CDFs) or Kolmogorov-Smirnov (K-S) and the chi square tests are used for the comparison of the suitability of these methods. The results show that maximum likelihood method performs well for most of the cases studied and hence recommended.

A Numerical Study on the Leakage of a Liquid from an Underwater Pipe without Pressure Gradient (압력구배가 없는 수중 파이프에서의 액체 오염물 유출에 관한 수치연구)

  • Song Museok;Han Jahoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2000
  • A two-dimensional numerical method for inviscid two-fluid flows with a significant entrainment into both directions is established, and the oil leakage from a non-pressurized underwater pipe is studied. The interface between two fluids is modeled at a vortex sheet. The flow field and the subsequent interface evolution are solved by using the vortex-in-cell method. For longer flow simulation with a realistic two fluids interaction, an efficient merging scheme is introduced. In the Boussinesq limit, the speed of the external fluid intrusion into the pipe is very close to the existing mathematical models, and the lock exchange is observed in spite of a significant roll-up of the interface and entrainments. It is believed that the developed method can be utilized effectively for further detailed studies on various two-fluid flows which are encountered in many different marine oil spill problems.

  • PDF

Study on the Wake Roll-up Behind Multiple Wings in Formation Flight (편대비행 하는 항공기 날개들에서 발생하는 후류말림 연구)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • The wake shapes behind wings in formation flight are very important to the aerodynamics and performances of aircrafts. In the present study, a discrete vortex methood is extended to handle the wake rollups behind multiple wings. It was found that the relative distance between the wings and the rotational direction of the wingtip vortices have significant effect on the movement of the wingtip vortices. When the wings are close to each other, the wingtip vortices moved faster than the wings of large relative distances. The vortex pair of opposite signs generated from each wingtip has an effect of moving the wingtip vortices upward. The relative height between the wings has an effect of moving the wingtips along the centerline of each vortex. The wakeshape behind multiple wings is a function of the relative distances and thus is dependent on the configuration of the formation flight. In the futhre, a study on the vortex movement pattern will be studied.

Parametric Optimization of Vortex Shedder based on Combination of Gambit, Fluent and iSIGHT

  • Nyein, Su Myat;Xu, He;YU, Hongpeng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2016
  • In this paper, a new framework that works the automatic execution with less design cycle time and human intervention bottlenecks is introduced to optimize the vortex shedder design by numerical integration method. This framework is based on iSIGHT combined with the pre-processor GAMBIT, and flow analysis software FLUENT. Two vortex shedders, circular with slit and triangular- semi circular cylinder, are employed as the designed models to be optimized, and DOE driver is used for optimization. According to the essential properties of a vortex shedder, it has found that the best diameters are 30mm for circular cylinder with slit and 30 to 35 mm for tri-semi cylinder. For slit ratio, 0.1 and 0.15 are the optimized values for circular with slit and tri-semi cylinder respectively. And it is found that these optimal results generated by DOE automated design cycle are in well agreement with the experiment.

Calculation of a 2-D channel flow with a dimple (딤플이 존재하는 2차원 수로유동의 계산)

  • Choe, Seo-Won;Baek, Yeong-Ho;Kim, Du-Yeon;Gang, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 1997
  • Heat-transfer enhancement is seeked through modifications of fin surface. Real life plate-fin heat exchangers have complex three-dimensional geometries. Fins can have arrays of dimples and are attached to rows of penetrating tubes. To isolate the effect of surface modification, we model the real flow by a two-dimensional channel flow with a dimple on one side. The flow is analysed by solving the incompressible Navier-Stokes equation by a finite volume method on a generalized boundary-fitted coordinate. Results show a trapped vortex inside the dimple for all cases computed. Local maximum of Nusselt number occurs near the downstream end of the dimple, due to such a vortex. Location of the vortex does not change with respect to the wall temperature change, but moved downstream when Reynolds number increases. This, together with the results that in all cases vortex core is somewhat downstream of the dimple center, suggests that the mean flow above continuously feeds the kinetic energy to the recirculating flow. Heat transfer enhancement and pressure losses are studied through analysing the relevant dimensionless parameters like, Nusselt number and friction factor. In all cases computed, dimpled channel flow experiences less pressure loss than two-dimensional Poiseuille flow.

The Flow Characteristics in a Shallow Rectangular Tank by Vortex Shedding (보텍스 쉐딩에 의한 얕은 직사각형통 내에서의 유동특성)

  • 서용권;문종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2122-2130
    • /
    • 1993
  • A numerical and experimental study has been performed on the flow in a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The numerical analysis shows that the pattern of vortex shedding changes considerably when the Reynolds number $R_e$ is varied from 500 to 7500. It is symmetric for $R_e$ <1500 and asymmetric for $R_e$ > 1500. The kinetic energies of the right-hand and left-hand sides of the vertical plate are used to quantify the degree of the asymmetry. Experimental visualization is carried out at $R_e$ = 3876 and 52000. The development of the streamline pattern at $R_e$ = 3876 is in closer agreement with the numerical result at $R_e$ = 1000 than that at $R_e$ =3876. The asymmetric pattern is observed at $R_e$ = 52000.

Numerical Computation of Vertex Behind a Bluff Body in the Flow between Parallel Plates (평행평판 내의 지주에 의한 와동 유동에 관한 수치해석)

  • 김동성;유영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1163-1170
    • /
    • 1992
  • A computer program was developed to analyze the two-dimensional unsteady incompressible viscous flow behind a rectangular bluff body between two parallel plates. The Peaceman-Rachford alternating direction implicit numerical method and Wachspress parameter were adopted to solve the governing equations in vorticity-transport and stream function formulation. The steady state flow and the vortex flow behind a rectangular bluff body in a chemical were investigated for Reynolds numbers of 200 and 500. The vortex shedding was generated by a physical pertubation numerically imposed at the center of the flow field for a short time. It was observed that the perturbed flow became periodic after a transient period.

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

PIV Measurement of Circular Cylinder Wake Using Vortex Tracking Phase-Average Technique (와추적 위상평균 기법을 이용한 원주후류의 PIV측정)

  • Kim, Gyeong-Cheon;Yun, Sang-Yeol;Kim, Sang-Gi;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.915-922
    • /
    • 2001
  • A new phase-average technique using instantaneous velocity fields obtained by a PIV method has been developed. The technique tracks vorticity centers and estimates the value of circulation for a chosen domain. The locations of vortex-centers and the magnitudes of circulation are matched together then showing a sine wave feature due to the periodic vortex shedding from the circular cylinder. Ensemble averaged and phase averaged velocity fields are successfully measured for the circular cylinder wake where Reynolds number is 3900 based on free stream velocity and cylinder diameter. The convection velocities of the vortices center and the vortex shedding frequency were measured by a single hot-wire probe.

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.