• Title/Summary/Keyword: von-Mises Stress

Search Result 533, Processing Time 0.027 seconds

Analysis of the Vibratory Characteristic of the Adult's and Baby's Brain Model (성인 뇌와 유아 뇌 모델의 진동 특성 해석)

  • Kim, Yeong-Eun;Yu, Jin-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.611-616
    • /
    • 1998
  • Using three dimensional finite element model of the human brain, vibratory characteristics of the human brain according to vibratory direction was analyzed. From this analysis 9, 14Hz and 2, 3Hz natural frequencies were calculated for adult's and baby's brain model respectively. Regardless of the vibratory direction relatively high shear stress, pressure and von Mises stress variation except acceleration were detected in the baby brain model. At each natural frequencies, adult's model showed relatively high stress level in the region of lower limb control area compared with upper limb control area at 14Hz natural frequency.

  • PDF

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

A Study on Structural Analysis for the Bellows of Automotive Exhaust System (승용차 배기계 벨로우즈의 구조해석에 관한 연구)

  • Kim, Jin-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1192-1196
    • /
    • 2010
  • As the space for installation of automotive exhaust system is limited, the space should be optimized with relation to the endurance and shape of the system. Geometric nonlinear analysis was used and deflection of bellows was assumed 6mm. Obtained results are as follows; (1) The Von-Mises stress of bellows is increased with increase of thickness or radius of bellows linearly. (2) As the principal stress varies according to the radius of convolution, it is necessary to decide the optimal radius of convolution.

Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface (시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석)

  • Park, Tae-Jo;Yoo, Jae-Chan;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

Effect of stem design on contact pressure distribution of end-of-stem in revision TKR (슬관절 재전치환술용 경골삽입물 형상이 접촉압력 분포에 미치는 영향)

  • Kim Y.H.;Koo K.M.;Kwon O.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.179-180
    • /
    • 2006
  • In this study, the effect of stem-end design on contact pressure and stress distribution in revision TKR was investigated using finite element method. The finite element model of tibia, including the cortical bone, the cancellous bone and canal, was developed based on CT images. The stem models with various stem lengths, diameters and frictional coefficients, and press-fit effects were considered. The results showed that the longer stem length, the stronger press-fit, the bigger stem diameter, and the higher frictional coefficient increased both peak contact pressure and the highest Von-Mises stress values. We hypothesized that peak contact pressure and Von-Mises stress distribution around the stem, may be related to the stem end pain. The results of this study will be useful to design the stem endand reduce the end-of-stem pain in revision TKR.

  • PDF

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan;Cheng, Xiyue;Deng, Shuiquan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2290-2298
    • /
    • 2020
  • The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

Sensitivity Analysis of Strain on Notches under Cyclic Loading to 2-D Finite Element Density in Elasto-Plastic Finite Element Analysis (탄소성 유한요소해석시 2차원 유한요소 밀도에 대한 반복하중이 작용하는 노치부의 변형률의 민감도 분석)

  • Jong-Sung Kim;Hyun-Su Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This paper presents sensitivity analysis results of strain on notches under cycling loading to 2-D finite element density considering plasticity. Cylindrical notched specimens having some stress concentrations were modeled with 2-D axisymmetrical finite element having various finite element densities. Elasto-plastic finite element analysis was performed for the various finite element models subjected to cycling loading considering plasticity. The finite element analysis results were compared to investigate sensitivity of the finite element analysis variables such as von-Mises effective stress, accumulated equivalent plastic strain, and equivalent plastic strain to 2-D finite element density. As a result of the comparison, it was found that the accumulated equivalent plastic strain is more sensitive than the others whereas the von-Mises effective stress is much less sensitive.

Stress Analysis on the Supporting Bone around the Implant According to the Vertical Bone Level (치조골 높이가 다른 임프란트 주위 지지골 응력분석)

  • Boo, Soo-Boong;Jeung, Jei-Ok;Lee, Seung-Hoon;Kim, Chang-Hyun;Lee, Seung-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • The purpose of this study was to analyze the distribution of stress in the surrounding bone around implant placed in the first and second molar region. Two different three-dimensional finite element model were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$) on the second molar region. A mandibular segment containing two implant-abutments and a two-unit bridge system was molded as a cancellous core surrounded by a 2mm cortical layer. The mesial and distal section planes of the model were not covered by cortical bone and were constrained in all directions at the nodes. Two vertical loads and oblique loads of 200 N were applied at the center of occlusal surface (load A) or at a position of 2mm apart buccally from the center (load B). Von-Mises stresses were analyzed in the supporting bone. The results were as follows; 1. With the vertical load at the center of occlusal surface, the stress pattern on the cortical and cancellous bones around the implant on model 1 and 2 was changed, while the stress pattern on the cancellous bone with oblique load was not. 2. With the vertical load at the center of occlusal surface, the maximum von-Mises stress appeared in the outer distal side of the cortical bone on Model 1 and 2, while the maximum von-Mises stress appeared in the distal and lingual distal side of the cortical bone with oblique load. 3. With the vertical load at a position of 2 mm apart buccally from the center, there was the distribution of stress on the upper portion of the implant-bone interface and the cortical bone except for the cancellous bone, while there was a distribution of stress on the cancellous bones at the apical and lingual sides around the fixture and on the cortical bone with oblique load. 4. With the changes of the supporting bone on the second molar area, the stress pattern on the upper part of the cortical bone between two implants was changed, while the stress pattern on the cancellous bone was not. The results of this study suggest that establishing the optimum occlusal contact considering the direction and position of the load from the standpoint of stress distribution of surrounding bone will be clinically useful.

Optimization Design of a Gas Valve for a LPG Cylinder Using a Taguchi's Experimental Method (다구찌 실험법을 이용한 액화석유가스 용기용 밸브의 최적설계에 관한 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.23-28
    • /
    • 2006
  • This paper presents the strength safety and the weight reduction analysis of nine gas valve models for a LPG cylinder using a finite element analysis program, MARC and Taguchi's experimental method. The maximum Von Mises stress of a gas valve body represents a safety of a brass valve structure for the given gas pressure of $91kg/cm^2$, which considered a safety factor of a LPG gas cylinder. The weight reduction analysis is very important for reducing a gas flow friction loss and a manufacturing cost as a design parameter. The calculated results present an design model 9 as an optimized design data with 10mm radius of a lower part gas flow pipe A, 6mm radius of an upper part gas flow pipe B and a connecting length 2 mm of tapered pipe D between lower and upper pipes.

  • PDF

Simulation of Explosion Using the Ideal Viscoelastic Object Yield Condition (이상적인 점탄성체 항복 조건을 이용한 폭발 시뮬레이션)

  • Sung, Su-Kyung;Kim, Gyeong-Su;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.14 no.6
    • /
    • pp.49-58
    • /
    • 2014
  • In particle-based fluid simulation, the yield stress is required for the deformation of the viscoelastic material like gel. von Mises's yield condition has been proposed to implement deformation of viscoelastic objects, but did not express the explosion. Furthermore, von Mises's yield condition is hard to approximate. We propose an ideal yield condition for viscoelastic object that reference from Tresca's yield condition. Unlike conventional particle-based simulation approximate the external power by the deformed length of the object, this paper is approximate the external power by area of the object. We check up that explosion was realistic when a viscoelastic object is compressed under the ideal yield condition.