• Title/Summary/Keyword: von Mises stresses

Search Result 155, Processing Time 0.033 seconds

Stress analysis according to the vertical bone level in the implant placement (임플란트 매식 시 수직골 높이에 따른 응력분석)

  • Kim, Min-Ho;Park, Young-Rok;Kay, Kee-Sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.301-311
    • /
    • 2002
  • The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different vertical bone level of implant fixture. The two kinds of finite element models were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$). The cemented crowns for mandibular first and second molars were made. Three- dimensional finite element model was created with the components of the implant and surrounding bone. Vertical loads were applied with force of 200N distributed within 0.5mm radius circle from the center of central fossa and distance 2mm and 4 mm apart from the center of central fossa. Von-Mises stresses were recorded and compared in the supporting bone, fixtures, abutment screws, and crown. The results were as following : (1) In vertical loading at the center circle of central fossa on model 1 and 2, the difference from vertical bone in implant placement did not affect the stress pattern on all components of implant except for crown. (2) With offset distance incerasing and the bone level of implant decreasing, the concentration of stress occured in the buccal side of long crown, around the buccal crestal bone, and on the fixture- abutment interface. As a conclusion, the research showed a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the vertical level of bone around fixture was different. Since the same vertical bone bed has more benefits than the different bone bed around fixtures, it is important to prepare a same vertical level of bone bed for the success of implants under occlusal loads.

Contact non-linear finite element model analysis of initial stability of mini implant (접촉 유한요소모델을 이용한 미니 임플란트의 초기 응력분포 연구)

  • Yoon, Hyun-Joo;Jung, Ui-Won;Lee, Jong-Suk;Kim, Chang-Sung;Kim, Jung-Moon;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Sung-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.681-690
    • /
    • 2007
  • Mini implants had been used provisionally for the healing period of implants in the beginning. But it becomes used for the on-going purpose, because it is simple to use, economic and especially suitable for the overdenture. But there is few studies about the stability of mini implants, that is most important factor for the on-going purpose, and particularly the implant parameters affecting the initial stability. The purpose of this study was to evaluate the stress and the strain distribution pattern of immediate-loaded screw type orthodontic mini-implant and the parameters affecting the initial stability of immediate-loaded mini-implant. Two dimensional finite element models were made and contact non-linear finite element analysis was performed. The magnitude and distribution of Von Mises stresses were evaluated. The obtained results were as follows: 1. The stress was concentrated on the thread tip of an implant in the cortical bone. 2. The direction of load is the most important factor for the stress distribution in cortical bone. 3. The diameter of an implant is the most important factor for the stress distribution in the trabecular bone. In conclusion, if the horizontal load vector is successfully controlled, mini-implants, which diameter is under 3mm, can be used for the on-going purpose.

Weight Reducing of Aluminum Extrusion Profiles of a Railway-Car Body Based on Topology and Size Optimization (알루미늄 압출재로 이루어진 철도차량 차체의 경량화를 위한 최적설계 방안 연구)

  • Han, Soon-Woo;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • In this study, we discussed the weight reducing of a urban railway-car body, in particular, of the Korean EMU, by optimizing topology and size of aluminum extrusion profiles. The heaviest parts of aluminum railway-car bodies, i.e., the base plate of underframe and side panels of side frame composed of double skin structures are considered for optimization. Topology optimization process is applied to obtain get an optimized rib structure for the base plate. The thickness of ribs and plates of the topologically optimized base plate and the existing side panel are also optimized by employing the size optimization process. The results are verified by comparing the maximum von Mises stresses and maximum deformation in the case of the existing design with those in the case of the optimized design. It is shown that the weight of a base plate and side panel can be reduced by 12% and that the weight of the whole car body can be reduced by 8.5%.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

Behavior of fully- connected and partially-connected multi-story steel plate shear wall structures

  • Azarafrooza, A.;Shekastehband, B.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.311-324
    • /
    • 2020
  • Until now, a comparative study on fully and partially-connected steel shear walls leading to enhancing strength and stiffness reduction of partially-connected steel plate shear wall structures has not been reported. In this paper a number of 4-story and 8-story steel plate shear walls, are considered with three different connection details of infill plate to surrounding frame. The specimens are modeled using nonlinear finite element method verified excellently with the experimental results and analyzed under monotonic loading. A comparison between initial stiffness and shear strength of models as well as percentage of shear force by model boundary frame and infill plate are performed. Moreover, a comparison between energy dissipation, ductility factor and distribution of Von-Mises stresses of models are presented. According to the results, the initial stiffness, shear resistance, energy dissipation and ductility of the models with beam-only connected infill plates (SSW-BO) is found to be about 53%, 12%, 15% and 48% on average smaller than those of models with fully-connected infill plates (SPSW), respectively. However, performance characteristics of semi-supported steel shear walls (SSSW) containing secondary columns by simultaneously decreasing boundary frame strength and increasing thickness of infill plates are comparable to those of SPSWs. Results show that by using secondary columns as well as increasing thickness of infill plates, the stress demands on boundary frame decreases substantially by as much as 35%. A significant increase in infill plate share on shear capacity by as much as 95% and 72% progress for the 4-story SSW-BO and 8-story SSSW8, respectively, as compared with non-strengthened counterparts. A similar trend is achieved by strengthening secondary columns of 4-story SSSW leading to an increase of 50% in shear force contribution of infill plate.

Damage mechanism and stress response of reinforced concrete slab under blast loading

  • Senthil, K.;Singhal, A.;Shailja, B.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.315-338
    • /
    • 2019
  • The numerical investigations have been carried out on reinforced concrete slab against blast loading to demonstrate the accuracy and effectiveness of the finite element based numerical models using commercial package ABAQUS. The response of reinforced concrete slab have been studied against the influence of weight of TNT, standoff distance, boundary conditions, influence of air blast and surface blast. The results thus obtained from simulations were compared with the experiments available in literature. The inelastic behavior of concrete and steel reinforcement bar has been incorporated through concrete damage plasticity model and Johnson-cook models available in ABAQUS were presented. The predicted results through numerical simulations of the present study were found in close agreement with the experimental results. The damage mechanism and stress response of target were assessed based on the intensity of deformations, impulse velocity, von-Mises stresses and damage index in concrete. The results indicate that the standoff distance has great influence on the survivability of RC slab against blast loading. It is concluded that the velocity of impulse wave was found to be decreased from 17 to 11 m/s when the mass of TNT is reduced from 12 to 6 kg. It is observed that the maximum stress in the concrete was found to be in the range of 15 to $20N/mm^2$ and is almost constant for given charge weight. The slab with two short edge discontinuous end condition was found better and it may be utilised in designing important structures. Also it is observed that the deflection in slab by air blast was found decreased by 60% as compared to surface blast.

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Influence of bone loss pattern on stress distribution in bone and implant: 3D-FEA study (주변 골흡수 양상에 따른 임플란트와 골의 응력분산에 관한 유한요소 분석)

  • Lee, Jong-Hyuk;Kim, Sung-Hun;Lee, Jae-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.111-121
    • /
    • 2010
  • Purpose: This 3D-FEA study was performed to investigate the influence of marginal bone loss pattern around the implant to the stress distribution. Material and methods: From the right second premolar to the right second molar of the mandible was modeled according to the CT data of a dentate patient. Teeth were removed and an implant ($\Phi\;4.0{\times}10.0mm$) was placed in the first molar area. Twelve bone models were created; Studied bone loss conditions were horizontal bone loss and vertical bone loss, assumed bone loss patterns during biologic width formation, and pathologic vertical bone loss with or without cortification. Axial, buccolingual, and oblique force was applied independently to the center of the implant crown. The Maximum von Mises stress value and stress contour was observed and von Mises stresses at the measuring points were recorded. Results: The stress distribution patterns were similar in the non-resorption and horizontal resorption models, but differed from those in the vertical resorption models. Models assuming biologic width formation showed altered stress distribution, and weak bone to implant at the implant neck area seams accelerates stress generation. In case of vertical bone resorption, contact of cortical bone to the implant may positively affect the stress distribution.

Three-dimensional finite element analysis for stress distribution on the diameter of orthodontic mini-implants and insertion angle to the bone surface (교정용 미니임플랜트의 직경 및 식립각도에 따른 응력 분포에 관한 3차원 유한요소 분석)

  • Byoun, Na-Young;Nam, Eun-Hye;Kim, Il-Kyu;Yoon, Young-Ah
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.178-187
    • /
    • 2006
  • The present study was performed to evaluate the stress distribution on the diameter of the mini-implant and insertion angle to the bone surface. To perform three dimensional finite element analysis, a hexadron of $15{\times}15{\times}20mm^3$ was used, with a 1.0 mm width of cortical bone. Mini-implants of 8 mm length and 1.2 mm, 1.6 mm, and 2.0 mm in diameter were inserted at $90^{\circ},\;75^{\circ},\;60^{\circ},\;45^{\circ},\;and\;30^{\circ}$ to the bone surface. Two hundred grams of horizontal force was applied to the center of the mini-implant head and stress distribution and its magnitude were analyzed by ANSYS, a three dimensional finite element analysis program. The findings of this study showed that maximum von Mises stresses in the mini-implant and cortical and cancellous bone were decreased as the diameter increased from 1.2 mm to 2.0 mm with no relation to the insertion angle. Analysis of the stress distribution in the cortical and cancellous bone showed that the stress was absorbed mostly in the cortical bone, and little was transmitted to the cancellous bone. The contact area increased according to the increased diameter and decreased insertion angle to the bone surface, but maximum von Mises stress in cortical bone was more significantly related with the contact point of the mini-implant into the cortical bone surface than the insertion angle to the bone surface. The above results suggest that the maintenance of the mini-implant is more closely related with the diameter and contact point of the mini-implant into the cortical bone surface rather than the insertion angle.