• Title/Summary/Keyword: volute

Search Result 135, Processing Time 0.027 seconds

A Study on Development of a Circulating Pump with Space Constraintst (설치공간이 제한된 순환펌프의 개발에 관한 연구)

  • Yoon, Eui-Soo;Yoo, Il-Su;Hwang, Soon-Chan;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • A circulating pump with installation space constraints was developed satisfying performance requirements such as flowrate, head and NPSHAv. The development procedures are composed of conceptual design, configuration design, performance analysis by CFD and performance test which were established in KIMM. The developed pump is OH4 type centrifugal pump which has a mixed-flow type impeller, a double volute and a rigid coupling. As a result of tests, the pump proved to meet all the requirements including space constraints and performance.

Investigation on the Internal Flow Characteristics of the Low Specific Speed Centrifugal Pump with Circular Casing

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.404-412
    • /
    • 2008
  • As a suitable volute configuration in the range of low specific speed, circular casing is suggested in this study. The internal flows in a centrifugal pump with the circular and spiral casings are measured by PIV and analyzed by CFD. The results show that the head and efficiency of the pump by a circular casing of very small radius are almost same as those by the spiral casing. Even at the best efficiency point, the internal flow of the pump by circular casing is asymmetric, and vortex and strong secondary flow occurs in the impeller passage. The radial velocity becomes higher remarkably only near the region of the discharge throat. The flow in the impeller outlet is strongly controlled by the circular casing because the velocity distribution almost does not affected by the position of the impeller blades.

Development of Air Supply System for Fuel Cell Electric Bus (연료전지 버스용 공기공급시스템 개발)

  • Kim, Woo-June;Park, Chang-Ho;Cho, Kyung-Seok;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

Preliminary Design Program for a High Thrust Liquid Rocket-Engine : Components Design for Static Performance Design (대추력 액체로켓엔진 예비설계 프로그램 : 정상성능 설계를 위한 구성품 모델링)

  • Ko, Tae-Ho;Kim, Sang-Min;Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.414-416
    • /
    • 2009
  • In order to build a transient simulation program for a high thrust liquid rocket engine(LRE), a static performance simulation program for components were made. The components were the thrust chamber (combustion chamber and supersonic nozzle), centrifugal pump (impeller and volute casing), impulse turbine, and flow control devices (control valve and orifice). Simplified mathematical models based on classical thermodynamic and inviscid theories were used to remove complexity and enhance the utility of the program. We examined the results of each program qualitatively for validate each component modeling.

  • PDF

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bun-Seog;Park, Moo-Ryong;Rhi, Seok-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.33-41
    • /
    • 2002
  • Low NPSH and high pressure pumps we widely used for turbopump systems, which have an inducer and operate at high rotating speeds. In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions at design or off-design points. The method was applied for the performance prediction of a fuel pump. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

Flow characteristics at the Impeller Exit of a Centrifugal Pump (원심펌프의 회전차 출구 유동 특성)

  • Hong, Soon-Sam;Kang, Shin-Hyoulg
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.36-44
    • /
    • 2000
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A hot-film probe and a high response pressure transducer are used to investigate the flow at impeller exit and vaneless diffuser region for design and off design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, design, and numerical analysis of pumps.

  • PDF

Control of Pump Performance with Attaching Flaps on Blade Trailing Edges

  • Kanemori, Yuji;Pan, Ying Kang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.109-120
    • /
    • 2008
  • An innovative method of changing a centrifugal low specific speed pump performance and pressure fluctuation by applying outlet flaps to impeller exit has been investigated. The outlet blade edge section corresponds to the trailing edge of wing on the circular-cascade, which dominates the pump performance and pressure fluctuation. Computational fluid dynamics (CFD) analysis of the entire impeller and volute casing and an experimental investigation are conducted. The pressure fluctuation and the vibration of the shaft are measured simultaneously. Kurtosis is applied as a dimensionless parameter with which the unevenness of velocity distribution at impeller outlet is indicated. The influence of the flaps on the pressure fluctuation is explained by the kurtosis. This paper presents a theoretical method of predicting the pump performance related to the attachment of a flap at impeller outlet.

PERFORMANCE ANALYSIS OF CANNED MOTOR PUMP (캔드모터펌프의 성능해석)

  • Ko, Sung-Ho;Kim, Yeon-Tae;Kwack, Young-Kyun;Kang, Min-Koo;Han, Seung-Yeul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.181-186
    • /
    • 2010
  • A numerical study was conducted to predict the performance curve of a canned motor pump for SMART(System Integrated Modular Advanced ReacTor). The study used a computational domain which included not only the pump but also a suction pipe and a volute casing with a discharging pipe in order to simulate an experimental setup. The ANSYS CFX program was utilized to obtain flow characteristics inside the pump as well as the overall pressure rise across the pump operating on- and off-design points. Computed results showed that the performance of the pump at off-design points was much lower than expected. Special attention was made to find the cause of the low performance of the pump operating at low flow rate.

  • PDF

하수 처리장 펌프의 특성과 개선 방향

  • 최영규
    • Journal of the KSME
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 1985
  • 하수 처리장에 사용되는 펌프는 엄격한 사양 및 성능 보장이 필요하므로 펌프 효율이 높아야 하며, 실적에 의한 사양 제시, 엄격한 검사 제도 및 기준이 이루어져야 한다. 그러나 현재로서는 국내에서 설계 제작면에서 경험과 실적이 부족하나 앞으로 많은 하수처리장에서 펌프가 소요 되며, 상수도용 펌프와 비교할 때 중소형의 경우에는 고가인 것을 감안하면 볼류트형(volute type)의 슬러지 펌프는 상수용 펌프에서의 경험을 바탕으로 기술 개발에 힘을 기울이고 전무제 작자를 육성하여 기술 축적 및 적절한 설비가 구비되도록 하여 실질적인 품질보증이 이루어지 도록 하여야 한다. 또한 특수펌프인 프로그레싱 캐비티 펌프나 스크류우 펌프에 대하여는 경 험이 부족하므로 프로그레싱 캐비티 펌프의 경우 로우터(rotor)와 스테이터(stator)를 수입하여 조립하거나 스크류유 펌프의 경우 기술 제휴를 통한 기술 개발을 이룩하는 방법을 택할 수도 있을 것이다. 현재 중소제작소에서 일부 기종에 대하여 외국인에 의한 중소기업진흥공단 주관의 단기간 기술지도를 받고 있으나 이에 대한 기술개발을 위하여는 전문기관과 장기적인 기술협력과 기술양성에 대한 투자가 이루어지고 전문업체가 육성되어야 할 것이나 이로서 중요 설비인 펌 프의 국산화가 조기에 달성되고 외화절약 및 기술정착이 이루어질 것이다.

  • PDF