• Title/Summary/Keyword: volute

Search Result 135, Processing Time 0.023 seconds

NUMERICAL SIMULATION ON A VOLUTE OF STRAIGHT CONICAL DUCT TYPE BY MULTI-BLOCK GRID (다중 블록 격자를 이용한 원뿔 직관 모양의 벌류트 유동의 수치해석)

  • Bae, H.;Kang, H.G.;Yoon, J.S.;Park, K.C.;Chang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.1-7
    • /
    • 2006
  • Numerical investigation of a centrifugal compressor volute having a modified straight conical duct hill been made. Three-dimensional Reynolds-Averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence equation are solved To avoid coordinate singularity at the central axis of the duct, multi-block H-type grid is generated on the circular cross-sections of the volute and stretched toward the solid wall boundary. We obtained numerical results with three different mass flow rates at the volute inlet, namely, with the inlet conditions that give small, medium and large mass flow rates at the outlet of the conical duct. Agreement with the experimental results is observed.

Design and Evaluation of Volute Casings for a Liquid Rocket Turbopump (액체로켓 터보펌프 벌류트 케이징의 구조설계 및 시험)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.775-776
    • /
    • 2010
  • Volute casings for a liquid rocket turbopump are designed and evaluated in a structural point of view. After the design step volute casings are manufactured by metal casting process, and then they are subjected to burst test for verification. In the burst test strains at several points are measured and compared with predicted values.

  • PDF

Burst Test of Volute Casings for Liquid Rocket Turbopump (액체로켓 터보펌프 벌류트 케이싱의 파열시험)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.12-18
    • /
    • 2011
  • Volute casings for liquid rocket turbopump are designed and evaluated in a structural point of view. At the design step 3D modeling and finite element analyses are conducted iteratively. During the step various loads such as internal pressure, casing stiffness and mounting forces are considered in the analyses, along with the weight minimization effort. After the design step volute casings are manufactured by metal casting process, and then they are subjected to burst test for structural verification. In the burst test strains at several points are measured and compared with predicted values.

AEffects of Impeller Blade Thickness on Performance of a Turbo Blower (임펠러 블레이드 두께가 터보블로워 성능에 미치는 영향)

  • Park, Jun-Young;Park, Moo-Ryong;Hwang, Soon-Chan;Ahn, Kook-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • This study is concerned with effects of impeller blade thickness on performance of a turbo blower. This turbo blower is developed as an air supply system in 250 kW MCFC system. The turbo blower consists of an impeller, two vaneless diffusers, a vaned diffuser and a volute. The three dimensional, steady state numerical analysis is simultaneously conducted for the impeller, diffuser and volute to investigate the performance of total system. To consider the non-uniform condition in volute inlet due to volute tongue, full diffuser passages are included in the calculation. The results of numerical analysis are validated with experimental results of thin blade thickness. Total pressure ratio, efficiency, slip factor and blade loading are compared in two cases. The slip factor is different in two cases and the comparison of two cases shows a good performance in thin blade thickness in all aspects.

Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan (원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석)

  • Heo, Seung;Kim, Daehwan;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Interaction between the unsteady flow emitted from the blade of the centrifugal fan and the volute tongue region of fan duct is known as the main noise source of the centrifugal fan. In this paper, the relative contributions of the volute tongue region of the centrifugal fan is analyzed to utilize as the foundation data of low noise design. The internal hybrid CAA (Computational Aero-Acoustics) method is used to predict noise radiated from the main noise source. This method is the noise prediction technique using CFD (Computational Fluid Dynamics), Acoustic analogy, and BEM(Boundary Element Method). The relative contributions of the centrifugal fan volute tongue region using the hybrid CAA method show that the region between the cut-off and the scroll has high contribution than the region between the cut-off and the outlet and the hub region of blade has high contribution than the shroud region of blade. These results is utilized as the important data for the development of low noise centrifugal fan.

Flow Characteristics of Two Types of Overhung Compressor Volute for Automobile Turbocharger (자동차용 터보차저의 오버헝 압축기 볼류트의 두 형태에 대한 유동장 특성)

  • Tianjun, Zhou;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The flow characteristics of two types of overhung compressor volutes for automobile turbochargers were analyzed numerically using commercial software. For obtaining high performance from a volute, it is necessary that the volute have a high pressure recovery coefficient and a low loss coefficient. We investigated the flow characteristics of two types of overhung compressor volutes with a fixed diffuser inlet angle of $24^{\circ}$ and a mass flow rate of 0.055 kg/s. The first type is a volute with one-arc cross section (type 1) and the second type is with three-arc cross section (type 2). Our results showed that between the two types of volutes, type 2 had the higher pressure recovery coefficient and the lower loss coefficient along the entire angular position.

Analysis on Characteristic of Pressure Fluctuation in Hydraulic Turbine with Guide Vane

  • Shi, FengXia;Yang, JunHu;Wang, XiaoHui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • An unsteady three-dimensional simulation based on Reynolds time-averaged governing equation and RNG $k-{\varepsilon}$ turbulence model, was presented for pump-as-turbine, the pressure fluctuation characteristic of hydraulic turbine with guide vane was obtained. The results show that the time domains of pressure fluctuation in volute change periodically and have identical cycles. In volute tongue and inlet pressure fluctuations are light, while in dynamic and static coupling interface pressure fluctuations are serious; In impeller blade region the pressure fluctuation of pressure surface are lighter than that of suction surface. The dominant frequencies of pressure fluctuation concentrate in low frequency region, and concentrate within 2 times of the blade passing frequency.

Experimental Study on Off-Design Performance of a Small Centrifugal Compressor for Gas Turbine Applications (가스터빈용 소형 원심압축기의 탈설계점 성능에 관한 실험연구)

  • Oh, JongSik;Lee, HeonSeok;Oh, KoonSup
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.211-218
    • /
    • 2000
  • Off-design experimental performance was investigated for a small centrifugal compressor, whose impeller diameter is about 125mm, used in an industrial gas turbine. Test rig was designed and manufactured with a radial inflow turbine and a combustor to supply driving power to the compressor. Static pressure was measured on the casing of the impeller, vaneless diffuser, vaned diffuser and volute. Total pressure was obtained using specially fabricated rakes at the vaned diffuser throat and exit. Circumferential nonuniformity was found, near surge, in the Impeller, vaned diffuser and volute region. Spanwise nonuniform flow from the impeller affected the total pressure defects in the vaned diffuser region. Static pressure distortion in the circumferential direction in the volute was found near surge, where the minimum occurred near 140 degree position.

  • PDF

Flow Analysis on the Different Volute Casing in a Centrifugal Fan (원심송풍기 볼류트 케이싱 형상에 따른 내부유동장 평가)

  • Jang, Choon-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.381-385
    • /
    • 2009
  • This paper describes performance characteristics of a centrifugal fan having a different volute casing. The centrifugal fan has a backward blade type, and is used in a refuse collecting system. The flow characteristics inside the components are analyzed by three-dimensional Navier-Stokes analysis, and also compared to the results by experiments. Distributions of pressure and efficiency obtained by numerical simulation has a good agreement with the experimental results. Throughout the numerical simulation of the centrifugal fan, a fan efficiency is increased by decreasing local losses in the blade passage. It is found that the fan efficiency is enhanced by decreasing the distance between the shroud of a impeller and casing. Detailed flow analysis is also analyzed and discussed using the results obtained by numerical simulation.

  • PDF

Numerical Analysis of Turbulent Flows in the Scroll Volute of Centrifugal Compressor (벌류트 압축기내의 난류유동 수치해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.681-686
    • /
    • 2007
  • The flow analysis was made by applying the turbulent models in the scroll volume of centrifugal compressor. The $k-{\varepsilon}.\;k-{\omega}$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector the Pressure contour. the change of residual along the iteration number. and the dynamic head are simulated by solving the Navier-Stokes equations for the comparison of four example cases.