• Title/Summary/Keyword: volumetric module

Search Result 25, Processing Time 0.021 seconds

Economic Alternative for Volumetric Module Lifting/Offloading (볼류메트릭 모듈 양중 및 인양 대안에 관한 연구)

  • Song, Seung-Ho;Kwon, Woo-Bin;Choi, Jin-Ouk;Cho, Hun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.75-76
    • /
    • 2023
  • The construction industry's lack of experience and expertise makes it difficult for projects to realize the full benefits of implementing modular construction. Such project performance-hindering elements are often labeled as modular challenges. The added requirement for the transportation of the finished volumetric module is one aspect of the 'module transportation logistics,' the under-researched modular challenge that can prevent projects from incurring maximum cost and productivity benefits. The typical module transportation phases include lifting, transporting, and offloading. From conducting a literature review, this paper aims to investigate the equipment commonly adopted to lift and offload the module and validate its economic efficiency by comparing it with the alternative lifting/offloading equipment used in the two case projects. The results showed that hydraulic jacks are an economic alternative to the crane for lifting/offloading the module. The increase in single-module projects with smaller budgets made crane usage economically undesirable, and this study suggested a viable option for a more economical alternative.

  • PDF

Implementation of AR Remote Rendering Techniques for Real-time Volumetric 3D Video

  • Lee, Daehyeon;Lee, Munyong;Lee, Sang-ha;Lee, Jaehyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.90-97
    • /
    • 2020
  • Recently, with the growth of mixed reality industrial infrastructure, relevant convergence research has been proposed. For real-time mixed reality services such as remote video conferencing, the research on real-time acquisition-process-transfer methods is required. This paper aims to implement an AR remote rendering method of volumetric 3D video data. We have proposed and implemented two modules; one, the parsing module of the volumetric 3D video to a game engine, and two, the server rendering module. The result of the experiment showed that the volumetric 3D video sequence data of about 15 MB was compressed by 6-7%. The remote module was streamed at 27 fps at a 1200 by 1200 resolution. The results of this paper are expected to be applied to an AR cloud service.

DEVELOPMENT OF COMPUTER SOFTWARE FOR CALCULATION OF VOLUMETRIC ERROR MAP IN 3 AXIS CMMs

  • Park, H.;M.Burdekin;G.Peggs
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.131-158
    • /
    • 1992
  • Verification, calibration, and compensation are becoming more essential elements for manufacture and maintenance of high performance CMMs. A computer module of volumetric error generation has been developed to calculate volumetric errors (random as well as systematic) from measured parametric errors, accepting most types of CMMs in current use. New transformation rules have been derived to transform all the parametric errors with respect to the origin of working volume considered, then incorporated, then incorporated into the module of error calculation. Two cases of practical CMMs are tested with the developed module, and showed good performance.

  • PDF

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

Analysis of the Salt Separation and Concentration Using Counter-current Reverse Osmosis Spiral Wound Module (향류식 역삼투 나권형 모듈을 이용한 염분리농축 특성 해석)

  • 조한욱;민병렬;최광호
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Counter-current type reverse osmosis spiral wound module was manufactured for the separation and concentration of salf solution. The ratio of permeate volumetric flow rate vs. brine volumetric flow rate was effective parameter between rejection and degree of cocentration. The reflection coefficient was correspondent to the relation between rejection and degree of cocentration by Spiegler-Kedem model. Counter-current reverse osmosis process had more osmotic pressure drop effect and more degree of concentration than general reverse osmosis process. As a result of computer calculation, the extension of module length than module diameter was more effective for the increase of degree of concentration.

  • PDF

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Performance Evaluation of SiC Honeycomb Modules Used for Open Volumetric Solar Receivers (개방형 체적식 흡수기를 위한 SiC 허니컴 모듈의 성능 평가)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Han, In-Sub;Seo, Doo-Won
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.120-125
    • /
    • 2012
  • Daegu Solar Power Tower Plant of a 200 kW thermal capacity uses an open air receiver. An air receiver is generally based on the volumetric receiver concept with porous ceramic absorbers. Because absorber material is important in the volumetric receiver, ceramic materials with excellent thermal conductivity, high solar absorptivity and good thermal stability have been researched. KIER also developed SiC honeycomb absorber modules and evaluated performance of the modules at the KIER solar furnace. For performance evaluation, we made an open volumetric receiver containing the modules and measured the outlet temperature and the efficiency. It is demonstrated that performance of the KIER absorber is comparable to that of a reference absorber developed by DLR.

  • PDF

Development and Evaluation of System for 3D Visualization Model of Biological Objects (3차원 생물체 가시화 모델 구축장치 개발 및 성능평가)

  • Hwang, H.;Choi, T. H.;Kim, C. H.;Lee, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct a biological object to obtain interior and exterior informations, 3D image visualization model from a series of sliced sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D visualization system is presented. The system is composed of three modules. The first module is the handling and image acquisition module. The handling module feeds and slices a cylindrical shape paraffin, which holds a biological object inside the paraffin. And the paraffin is kept being solid by cooling while being handled. The image acquisition modulo captures the sectional image of the object merged into the paraffin consecutively. The second one is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last one is the image processing and visualization module, which processes a series of acquired sectional images and generates a 3D volumetric model. To verify the condition for the uniform slicing, normal directional forces of the cutting edge according to the various cutting angles were measured using a strain gauge and the amount of the sliced chips were weighed and analyzed. Once the 3D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, and scaling including arbitrary sectional view.

  • PDF

PROTOTYPE AUTOMATIC SYSTEM FOR CONSTRUCTING 3D INTERIOR AND EXTERIOR IMAGE OF BIOLOGICAL OBJECTS

  • Park, T. H.;H. Hwang;Kim, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.318-324
    • /
    • 2000
  • Ultrasonic and magnetic resonance imaging systems are used to visualize the interior states of biological objects. These nondestructive methods have many advantages but too much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get the interior and exterior information, constructing 3D image from the series of the sliced sectional images gives more useful information with relatively low cost. In this paper, PC based automatic 3D model generator was developed. The system was composed of three modules. One is the object handling and image acquisition module, which feeds and slices objects sequentially and maintains the paraffin cool to be in solid state and captures the sectional image consecutively. The second is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last is the image processing and visualization module, which processes a series of acquired sectional images and generates 3D graphic model. The handling module was composed of the gripper, which grasps and feeds the object and the cutting device, which cuts the object by moving cutting edge forward and backward. Sliced sectional images were acquired and saved in the form of bitmap file. The 3D model was generated to obtain the volumetric information using these 2D sectional image files after being segmented from the background paraffin. Once 3-D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

Dialysis with ultrafiltration through countercurrently parallel-flow membrane modules

  • Yeh, Ho-Ming;Chen, Chien-Yu
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.191-202
    • /
    • 2013
  • The application of ultrafiltration operation to the dialysis in countercurrently parallel-flow rectangular membrane modules was investigated. The assumption of uniform ultrafiltration flux was made for operation with slight concentration polarization and declination of transmembrane pressure. Considerable improvement in mass transfer is achievable if the operation of ultrafiltration is applied, especially for the system with low mass transfer coefficient. The enhancement in separation efficiency is significantly increased with increasing ultrafiltration flux, as well as with increasing the volumetric flow rates. Furthermore, increasing the volumetric flow rate in retentate phase is more beneficial to mass transfer than increasing in dialysate phase.