• Title/Summary/Keyword: volume-rate

Search Result 4,563, Processing Time 0.031 seconds

Comparative Analysis of Perception Volume, Intake Volume, and Satiety Rate of Rice, Soup and Side Dishes Using Tableware and Food Tray (식기류와 식판을 이용한 밥, 국과 반찬들의 인지량, 섭취량 및 포만도의 비교분석)

  • Jung, Eun-Jin;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.26 no.4
    • /
    • pp.269-277
    • /
    • 2020
  • The perception volume, intake volume, and satiety rate of rice, soup, and side dishes using tableware and food trays were analyzed. Rice, beef, soup, and side dishes in tableware (1st week) and the same menu in food trays (2nd week) were served to twenty-nine female college students over two consecutive weeks (BMI 22.1 kg/㎡, Age 22.9 yr). The results showed that the perceived volume of soup served in tableware was significantly higher than when served in a food tray. On the other hand, except for the perception volume of soup (tableware: 174.80±19.40 g, food tray: 136.14±12.77 g, P<0.05), there was no significant difference in the food perception volume and food intake volume using tableware and food trays between the two groups. The satiety rate of the food tray group (6.68) was significantly higher than that of the tableware group (7.42) after one hour (P<0.05). However, except after one hour, the two groups' satiety rate showed a similar pattern. In most of the comparisons, the results showed no difference between table ware and food trays. Besides, the use of food trays has advantages in terms of easy to manage and convenience. Therefore, food trays might be a better option instead of a tableware.

The Influences of Meteorological Factors, Discount rate, and Weekend Effect on the Sales Volume of Apparel Products (기상요인, 가격할인 및 주말효과가 의류상품 판매량에 미치는 영향)

  • Hwangbo, Hyunwoo;Kim, Eun Hie;Chae, Jin Mie
    • Fashion & Textile Research Journal
    • /
    • v.19 no.4
    • /
    • pp.434-447
    • /
    • 2017
  • This study investigated the effects of influencing factors on the sales volume of apparel products. Based on previous studies, weekend effect, discount rate, and meteorological factors including daily average temperature, rainfall, sea level pressure, and fine dust were selected as independent variables to calculate their effects on sales quantity of apparel products. The daily sales data during 2015 - 2016 were collected from casual brands and outdoor brands which "A" apparel manufacturing company had operated. The actual data of "A" company were analyzed using SAS(R) 9.4 and SAS(R) Enterprise Miner 14.1. The results of this study were as follows: First, the influencing factors on total sales volume of apparel products were proved to be the weekend effect, discount rate, and fine dust. Second, the analysis of influencing factors on sales volume of apparel products according to season showed: 1) In casual brands, the average temperature had a significant influence on the sales volume of spring/summer products, and the sea level pressure affected the sales volume of summer/fall/winter products significantly. 2) In outdoor brands, the average temperature and the fine dust had a significant influence on the sales volume of all season's products. The sea level pressure affected the sales volume of summer/fall/ winter products significantly. The weekend effect and the discount effect affected the sales volume of apparel products partly. Third, the effect of rainfall was not proven significant, which was different from the results of past studies.

Effect of the Droplet Volume on the Evaporative Characteristics of Sessile Droplet (액적 체적이 증발 특성에 미치는 영향에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Kim, Hong Seok;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to investigate the influence of the droplet volume on the evaporation characteristics of the sessile droplet. In particular, the effect of the free convection in the vapor domain on the evaporation rate was analyzed through the numerical simulation. The commercial code of the ANSYS Fluent (V.2020 R2) was used to simulate the heat transfer in the liquid-vapor domain. Moreover, we used the diffusion model to estimate the evaporation rate for the different droplet volume under the room temperature. It was found that the evaporation rate significantly increases with the droplet volume because of the larger surface area for the mass transfer. Also, the effect of free convection on the evaporation rate becomes significant with an increment of droplet volume owing to the increase in the droplet radius corresponding to the characteristic length of the free convection.

Numerical Analysis of Sufficient Condition on Larger Rate Volume of CIS/non-SIC over IIS/SIC in 3-User NOMA (삼중 사용자 비직교 다중 접속에서 IIS/SIC에 대한 CIS/non-SIC의 확대 전송률 용적의 충분조건의 수치 해석)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.29-35
    • /
    • 2021
  • Since a sufficient condition on the larger rate volume of 3-user correlated information sources (CIS)/non-successive interference cancellation (SIC) non-orthogonal multiple access (NOMA) over independent information sources (IIS)/SIC NOMA has not been investigated, this paper analyzes such a sufficient condition. First, we demonstrates that the rate volume of 3-user CIS/SIC NOMA is the same as a portion of the rate volume of 3-user IIS/SIC NOMA. Then, by identifying a dominant rate region, we calculate the sufficient condition on the larger rate volume of 3-user CIS/non-SIC NOMA over 3-user IIS/SIC NOMA. We also show that with such condition, the rate volume of 3-user CIS/non-SIC NOMA can be larger than that of 3-user IIS/SIC NOMA.

The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect (체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구)

  • Chung, Eui-Heon;Kwon, Se-jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

Micro Cell Counter Using a Fixed Control Volume Between Double Electrical Sensing Zones (다수의 계수구역간의 검사체적을 이용한 소형 세포농도센서)

  • Lee Dong Woo;Yi Soyeon;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1615-1620
    • /
    • 2005
  • We present a novel flow-rate independent cell counter using a fixed control volume between double electrical sensing zones. The previous device based on the single electrical cell sensing in a given flow-rate requires an accurate fluid volume measurement or precision flow rate control. The present cell counter, however, offers the flow-rate independent method for the cell concentration measurement with counting cells in a fixed control volume of $22.9{\pm}0.98{\mu}{\ell}$. In the experimental study, using the RBC (Red Blood Cell), we have compared the measured RBC concentrations from the fabricated devices with those from Hemacytometer. The previous and present devices show the maximum errors of $20.3\%\;and\;16.1\%$, which are in the measurement error range of Hemacytometer (about $20\%$). The present device also shows the flow-rate independent performance at the constant flow-rates ($5{\mu}{\ell}/min$ and $10{\mu}{\ell}/min$) and the varying flow-rate (4, 2, and $4{\mu}{\ell}/min$). Therefore, we demonstrate that the present cell counter is a simple and automated method for the cell concentration measurement without requiring an accurate fluid measurement and precision flow-rate control.

Effects of fiber survival rate on Mechanical properties in Light weight short fiber reinforced composites for Automobile Application (자동차 경량화를 위한 단섬유강화 복합재료에서의 섬유생존율이 기계적 물성에 미치는 영향에 관한 연구)

  • Choi, Young-Geun;Lee, Sang-Hyoup;Lee, In-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • In this study, the survival rate of fiber is investigated by nozzle size difference in injection/mold sides. The survival rate of fiber is influenced about the nozzle size differ. Also, The mechanical properties of short carbon glass fiber reinforced polypropylene are experimentally measured as functions of fiber volume fraction and nozzle size difference. These mechanical properties are compared with the survival rate of fiber and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber as well as fiber volume fraction is influenced by injection processing condition, the used materials, mold conditions and nozzle sides difference, etc, In particular, the survival rate of fiber is great influenced when injection/mold nozzle sides are different more than that of the same. Consequently, the mechanical properties of short carbon/glass fiber reinforced polypropylene arc improved as the nozzle sides are the same in injection mold sides.

  • PDF

A Study on the Effect of Nanofluids Flow Direction in Double Pipe (이중관 내부 나노유체의 유동방향 영향에 관한 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.82-91
    • /
    • 2021
  • We compared the heat transfer characteristics of the parallel and the counterflow flow in the concentric double tube of the Al2O3/water nanofluids using numerical methods. The high- and low-temperature fluids flow through the inner circular tube and the annular tube, respectively. The heat transfer characteristics according to the flow direction were compared by changing the volume flow rate and the volume concentration of the nanoparticles. The results showed that the heat transfer rate and overall heat transfer coefficient improved compared to those of basic fluid with increasing the volume and flow rate of nanoparticles. When the inflow rate was small, the heat transfer performance of the counterflow was about 22% better than the parallel flow. As the inflow rate was increased, the parallel flow and the counterflow had similar heat transfer rates. In addition, the effectiveness of the counterflow increased from 10% to 22% rather than the parallel flow. However, we verified that the increment in the friction factor of the counterflow is not large compared to the increment in the heat transfer rate.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Fuel Injection Velocity for a Liftoff Flame (부상화염에서 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.466-475
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of fuel injection velocity at the fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity, but its effect on the flame propagation velocity is not much greater under 4%. The increase of fuel injection velocity affects directly and linearly on the flame surface area in the fuel rich region and so enhances volume integral of reaction rate to accommodate the increment of fuel.

Experimental Characteristic of Drain Control to Cherepnov Water Lifter (Cherepnov 송수기에 대한 배수제어방식의 실험적 특성)

  • 박성천;이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.67-79
    • /
    • 1997
  • The perpose of this study was to suggest the experimental characteristic of the Cherepnov Water Lifter following the drain mode. The Cherepnov Water Lifter(CWL), which is powered by the potential energy of water, can be set to operate automatically when the water m a tank is drained. In this study, a CWL is constructed in the valve drain controlling mode(VCM) and the siphon drain controlling mode(SCM), and a pressure transducer is installed. It was found that, in the VCM, intake flow volume is proportional to both delivery flow volume and drain flow volume. In the SCM, intake flow volume is proportional to drain flow volume, and the average delivery rate is proportional to both efficiency and the water utilization ratio. Also, in the VCM, the water utilization ratio is 35~49%, efficiency is 62~9O%, average delivery rate is 12.8~81.2$cm^3$/s, and the average drain rate is 14.O~91.5c$cm^3$/s. On the contrary in the SCM, the water utilization ratio is 1.7~38%, efficiency is 3~58%, average delivery rate is 3.1 ~69.2$cm^3$/s, and the average drain rate is shown as 114.5~ 183$cm^3$/s. As a result of the water utilization ratio, efficiency, average delivery rate, and average drain rate are compared, the VCM is found to be superior and the more economical mode. However, the VCM requires manpower and electricity to operate the electronic machinery involved, while the SCM requires no manpower or electricity at all. An economic evaluation of these differences will be necessary in the future. Also, in the SCM, studies to improve water utilization ratio and efficiency, to find the optimum height of the siphon for decreasing the average drain rate, and to determine the radius of curvature of throat have to be conducted in advance, since a large flow rate is drained during the priming action of the siphon.

  • PDF