• Title/Summary/Keyword: volume strain

Search Result 718, Processing Time 0.027 seconds

Compressive and Tensile Properties of Highly Ductile Composites According to Water-binder Ratio and Fiber Type (물-결합재 비율과 섬유 종류에 따른 고연성 복합재료의 압축 및 인장특성)

  • Se-Eon Park;Bang Yeon Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.135-142
    • /
    • 2024
  • The purpose of this study is to experimentally investigate the effect of water-binder ratio and fiber type on the compressive strength and tensile performance of fiber reinforced highly ductile composites. To achieve this, four different mixtures were prepared by varying the water-binder ratio and fiber type, and compression and tension tests were conducted. The test results showed that the influence of fiber type on compressive strength was minimal, however, the WB50 series mixture exhibited a 29 % lower strength compared to the WB40 series mixture, indicating a significant effect of the water-binder ratio. On the other hand, the effect of fiber type on tensile properties was found to be more significant than that of the water-binder ratio. Tensile strain capacity ranged from 2.9 % to 6.2 %, with PE series mixtures showing 1.63 to 2.14 times higher performance compared to PVA series mixtures. Additionally, the crack patterns of the PE series mixtures were superior than those of the PVA series mixtures.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi;A.R. Nezamabadi;M. Karami Khorramabadi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.219-232
    • /
    • 2024
  • In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.

Understanding the creep behavior of bentonite-sand mixtures as buffer materials in a low-level radioactive waste repository in Taiwan

  • Guo-Liang Ren;Wei-Hsing Huang;Hsin-Kai Chou;Chih-Chung Chung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3884-3897
    • /
    • 2024
  • This study investigates the creep behavior of bentonite-sand mixtures as potential buffer materials for low-level radioactive waste (LLW) repositories, with a specific case study in Taiwan. To assess the long-term hydro-mechanical properties, constant-volume swelling pressure, hydraulic conductivity, strain-controlled shear, and stress-controlled shear tests were conducted on MX80 and KV1 bentonite-sand mixtures. The experimental results indicate that MX80-sand 70/30 mixtures are prioritized as the buffer materials with 2.10 MPa swelling pressure and 1 × 10-13 m/s hydraulic conductivity. However, the shear strength of mixtures was reduced by almost 50 % when fully saturated. Furthermore, this study proposed a novel stress-controlled direct shear apparatus to retrieve the creep model parameters. The numerical method based on the creep model efficiently supports and simulates the saturation process and creep displacement. The finite element method (FEM) result predicts that the buffer of both bentonite-sand mixtures will achieve an average degree of saturation of 95 % at the end of three decades and full saturation in 100 years. The simulated creep displacement results at key nodes suggest that both top and bottom parts in the buffer, assembled from MX80-sand 70/30 mixtures or KV1-sand 70/30 mixtures, will have almost equivalent values of 4 mm in the horizontal and 2 mm in the vertical directions eventually.

Growth of the Tilapia, Oreochromis niloticus, in the Closed Aquaculture System (폐쇄식 사육 장치내에서 틸라피아(Oreochromis niloticus)의 성장)

  • KIM In-Bae;SON Maeng-Hyun;MIN Byung-Suk
    • Journal of Aquaculture
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • A series of rearing experiments were conducted to determine the growth rates and feed conversion efficiencies of tilapia in accordance with body size or age in nearly total closed system glass aquariums ($270\;\ell$ each in water volume) and concrete tanks ($4000\;\ell$) from April 10 to October 16, 1987. The fish used for the experiments was a Japanese strain of Oreochromis niloticus, and the size of the fish ranged from 7 g to more than 1,000 g in body weight. The starting stocking rates for each experimental lot were 10 to 20 kg in the glass aquarium ($3.7{\%}$ to $7.4{\%}$ of water volume) and 200 kg in the concrete tank ($5{\%}$ of water volume). A single experimental rearing term was 14 days with slight variations on occasions. Water temperature was designed to be kept at $26^{\circ}C$ but slight fluctuations were inevitable. Dissolved oxygen level was designed to be maintained at around $3\;mg/\ell$, but it also showed some variations. The ammonia level in the glass aquarium section once reached up to $18\;mg/\ell$, but generally remained at around $4\;mg/\ell$, and in the concrete tank section it was maintained at around $1\;mg/ell$. The feed was composed of mainly soybean meal with a small amount of fish meal as the protein source, and the crude protein content was about $32{\%}$. Mean daily growth rate was $3.5{\%}$ of body weight with 0.9 in food conversion ratio in the glass aquarium when the mean weight of fish was around 10 g with gradually reduced performances as the fish grew bigger. When the mean weight was 800 g, mean daily growth rate was $0.5{\%}$ with about 1.5 in food coversion for fish in the glass aquarium, and $0.8{\%}$ and 1.6 for fish in the concrete tank, respectively. According to the mean growth rate obtained from this experiment, it was calculated that the fish reared in the concrete tank require 223 days from 50 g to reach 1,000 g which is the ideal size for market in Korea, at the conditions provided as above, and 302 days from 10 g fingerlings to 800 g fish in the glass aquarium conditions of the closed recirculating water system.

  • PDF

Experimental Investigation of Frost Heaving Susceptibility with Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동상특성에 관한 실험적 연구)

  • Hong, Seungseo;Park, Junghee;Lee, Jongsub;Lee, Jangguen;Kang, Jaemo;Kim, Youngseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.5-16
    • /
    • 2012
  • The second scientific antarctic station of South Korea is under construction at Terra Nova Bay located in eastern Antarctica. Ground condition in the Antarctica is frozen in general, but there are seasonal frozen grounds with active layers sporadically. When the active layer is frozen, frost heaving occurs that might cause the differential movement of frozen ground and the failure of structures. Therefore, it is necessary to determine the frost heaving susceptibility of soils at Terra Nova Bay before starting antarctic station construction. This study presents experimental investigation of the frost heaving susceptibility of soil samples with variation of particle sizes and unfrozen water contents. The soil samples were taken from five different locations at Terra Nova Bay and physical properties, unfrozen water content, and frost heaving tests were performed. For the frost heaving tests, soil specimens were frozen with constant freezing temperatures at the top and with drainage at the bottom in order to stimulate the frost heaving. The frost heaving tests provide volume expansion, volumetric strain, and heaving rate which can be used to analyze the relationship between the frost heaving vs. particle size and the frost heaving vs. unfrozen water content. Experimental results show that the more the fine contents exist in soils, the more frost heaving occurs. In addition, the frost heaving depends on unfrozen water content. Experimental data can be used to evaluate the frost heaving susceptibility of soils at the future construction site in the Antarctica.

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF

Particle Size-Dependent Failure Analysis of Particle-Reinforced Metal Matrix Composites using Dislocation Punched Zone Modeling (전위 펀치 영역 모델링에 의한 입자 강화 금속지지 복합재의 입자 크기 의존 파손 해석)

  • Suh, Yeong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.275-282
    • /
    • 2014
  • Particle-reinforced metal matrix composites exhibit a strengthening effect due to the particle size-dependent length scale that arises from the strain gradient, and thus from the geometrically necessary dislocations between the particles and matrix that result from their CTE(Coefficient of Thermal Expansion) and elastic-plastic mismatches. In this study, the influence of the size-dependent length scale on the particle-matrix interface failure and ductile failure in the matrix was examined using finite-element punch zone modeling whereby an augmented strength was assigned around the particle. The failure behavior was observed by a parametric study, while varying the interface failure properties such as the interface strength and debonding energy with different particle sizes and volume fractions. It is shown that the two failure modes (interface failure and ductile failure in the matrix) interact with each other and are closely related to the particle size-dependent length scale; in other words, the composite with the smaller particles, which is surrounded by a denser dislocation than that with the larger particles, retards the initiation and growth of the interface and matrix failures, and also leads to a smaller amount of decrease in the flow stress during failure.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Enhancement of Anti-tumor Activity of Newcastle Disease Virus by the Synergistic Effect of Cytosine Deaminase

  • Lv, Zheng;Zhang, Tian-Yuan;Yin, Jie-Chao;Wang, Hui;Sun, Tian;Chen, Li-Qun;Bai, Fu-Liang;Wu, Wei;Ren, Gui-Ping;Li, De-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7489-7496
    • /
    • 2013
  • This study was conducted to investigate enhancement of anti-tumor effects of the lentogenic Newcastle disease virus Clone30 strain (NDV rClone30) expressing cytosine deaminase (CD) gene against tumor cells and in murine groin tumor-bearing models. Cytotoxic effects of the rClone30-CD/5-FC on the HepG2 cell line were examined by an MTT method. Anti-tumor activity of rClone30-CD/5-FC was examined in H22 tumor-bearing mice. Compared to the rClone30-CD virus treatment alone, NDV rClone30-CD/5-FC at 0.1 and 1 MOIs exerted significant cytotoxic effects (P<0.05) on HepG2 cells. For treatment of H22 tumor-bearing mice, recombinant NDV was injected together with 5-FC given by either intra-tumor injection or tail vein injection. When 5-FC was administered by intra-tumor injection, survival for the rClone30-CD/5-FC-treated mice was 4/6 for 80 days period vs 1/6, 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC and saline alone, respectively. When 5-FC was given by tail vein injection, survival for the rClone30-CD/5-FC-treated mice was 3/6 vs 2/6, 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC or saline alone, respectively. In this study, NDV was used for the first time to deliver the suicide gene for cancer therapy. Incorporation of the CD gene in the lentogenic NDV genome together with 5-FC significantly enhances cell death of HepG2 tumor cells in vitro, decreases tumor volume and increases survival of H22 tumor-bearing mice in vivo.