DOI QR코드

DOI QR Code

Understanding the creep behavior of bentonite-sand mixtures as buffer materials in a low-level radioactive waste repository in Taiwan

  • Guo-Liang Ren (Dept. of Civil Engineering, National Central University) ;
  • Wei-Hsing Huang (Dept. of Civil Engineering, National Central University) ;
  • Hsin-Kai Chou (Dept. of Civil Engineering, National Central University) ;
  • Chih-Chung Chung (Dept. of Civil Engineering/Research Center for Hazard Mitigation and Prevention, National Central University)
  • Received : 2024.01.24
  • Accepted : 2024.04.21
  • Published : 2024.09.25

Abstract

This study investigates the creep behavior of bentonite-sand mixtures as potential buffer materials for low-level radioactive waste (LLW) repositories, with a specific case study in Taiwan. To assess the long-term hydro-mechanical properties, constant-volume swelling pressure, hydraulic conductivity, strain-controlled shear, and stress-controlled shear tests were conducted on MX80 and KV1 bentonite-sand mixtures. The experimental results indicate that MX80-sand 70/30 mixtures are prioritized as the buffer materials with 2.10 MPa swelling pressure and 1 × 10-13 m/s hydraulic conductivity. However, the shear strength of mixtures was reduced by almost 50 % when fully saturated. Furthermore, this study proposed a novel stress-controlled direct shear apparatus to retrieve the creep model parameters. The numerical method based on the creep model efficiently supports and simulates the saturation process and creep displacement. The finite element method (FEM) result predicts that the buffer of both bentonite-sand mixtures will achieve an average degree of saturation of 95 % at the end of three decades and full saturation in 100 years. The simulated creep displacement results at key nodes suggest that both top and bottom parts in the buffer, assembled from MX80-sand 70/30 mixtures or KV1-sand 70/30 mixtures, will have almost equivalent values of 4 mm in the horizontal and 2 mm in the vertical directions eventually.

Keywords

Acknowledgement

We would like to thank research assistants in Center of Quality Assurance at Taiwan National Central University for their kind help in performing experiments.

References

  1. IAEA, Scientific and Technical Basis for the Near Surface Disposal of Low and Intermediate Level Waste, TECHNICAL REPORTS SERIES No. 412, International Atomic Energy Agency, Vienna, 2002.
  2. M. Akesson, L. Borgesson, O. Kristensson, SR-site Data Report: THM Modelling of Buffer, Backfill and Other System Components, 2010. SKB Technical Report TR-10-44, Stockholm, Sweden.
  3. J. Lee, K. Kim, I. Kim, H. Ju, J. Jeong, C. Lee, J.W. Kim, D. Cho, High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite, Nucl. Eng. Technol. 55 (4) (2023) 1540-1554, https://doi.org/10.1016/j.net.2023.02.031.
  4. R. Pusch, R.N. Yong, M. Nakano, Geologic Disposal of Low- and Intermediate-Level Radioactive Waste, first ed., CRC Press. Boca raton, Florida, USA, 2017.
  5. J.Y. Goo, J. Kim, J.S. Kwon, H.Y. Jo, A literature review on studies of bentonite alteration by cement-bentonite interactions, Economic and Environmental Geology 55 (2022) 219-229, https://doi.org/10.9719/EEG.2022.55.3.219.
  6. H. Komine, Predicting hydraulic conductivity of sand-bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes, Eng. Geol. 114 (3) (2010) 123-134, https://doi.org/10.1016/j.enggeo.2010.04.009.
  7. R. Pusch, R. Adey, Creep in Buffer Clay. SKB-TR-99-32, 1999 (Sweden).
  8. M. Akesson, O. Kristensson, L. Borgeson, A. Dueck, J. Hernelind, THM Modelling of Buffer, Backfill and Other System Components. Critical Processes and Scenarios, Svensk Karnbranslehantering AB, Sweden, 2010. SKB TR-10-11, https://www.skb.com/publication/2095121.
  9. E. Toprak, N. Mokni, S. Olivella, in: Thermo-Hydro-Mechanical Modelling of Buffer, 2012. POSIVA Synthesis Report (2012-47), Eurajoki, Finland.
  10. Taipower Corporation, Report on the Results of Recommended Candidate Site Safety Assessment for Low-Level Radioactive Waste Disposal, Taipower Report, 2019 (in Chinese).
  11. Taipower Corporation, Report on the Results of the Implementation of the Final Disposal Plan for Low-Level Radioactive Waste, Taipower Report, 2021 (in Chinese).
  12. M. Ajdari, E. Niknam, H. Bahmyari, Z. Esfandiari, Consolidation and Creep Phenomena in a Sand-Bentonite Mixture under Controlled Suctions, 17, Geomechanics and Geoengineering, 2020, pp. 1-12, https://doi.org/10.1080/17486025.2020.1714082.
  13. A. Singh, J.K. Mitchell, General Stress-Strain-Time Function for Soils Geotech, 94, Special Publ, ASCE, 1968, pp. 21-46, https://doi.org/10.1061/JSFEAQ.0001084.
  14. J.H. Yin, J. Graham, Elastic viscoplastic modelling of time-dependent stress-strain behavior of soils, Can. Geotech. J. 36 (4) (2011) 736-745, https://doi.org/10.1139/cgj-36-4-736.
  15. G. Bi, S. Ni, D. Wang, Y.Q. Chen, J.F. Wei, W.Z. Gong, Creep in primary consolidation with rate of loading approach, Sci. Rep. 9 (2019) 8992, https://doi.org/10.1038/s41598-019-45498-0.
  16. L. Wang, J. Han, S. Liu, X. Yin, Variation in shearing rate effect on residual strength of slip zone soils due to test conditions, Geotech. Geol. Eng. 38 (3) (2020) 2773-2785, https://doi.org/10.1007/s10706-020-01186-9.
  17. F. Tong, J.H. Yin, Nonlinear creep and swelling behavior of bentonite mixed with different sand contents under oedometric condition, Mar. Georesour. Geotechnol. 29 (4) (2011) 346-363. https://10.1080/1064119X.2011.560824.
  18. S. Kawabe, F. Tatsuoka, Creep characteristics of clay in one-dimensional compression with unloading/reloading cycles, in: 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 2013, pp. 235-238 (PARIS).
  19. K. Liu, W.B. Chen, J.H. Yin, A novel multifunctional apparatus for testing unsaturated soils, Acta Geotech 16 (2021) 3761-3778, https://doi.org/10.1007/s11440-021-01399-z.
  20. D. Fredlund, N. Morgenstern, R. Widger, The shear strength of unsaturated soils, Can. Geotech. J. 15 (1978) 313-321, https://doi.org/10.1139/t78-029.
  21. D. Sheng, A. Zhou, D. Fredlund, Shear strength criteria for unsaturated soils, Geotech. Geol. Eng. 29 (2011) 145-159, https://doi.org/10.1007/s10706-009-9276-x.
  22. B.M. Das, Advanced Soil Mechanics, fifth ed., CRC Press, 2019 https://doi.org/10.1201/9781351215183.
  23. J. Kim, R. Roque, B. Birgisson, ASTM STP, Obtaining Creep Compliance Parameters Accurately from Static or Cyclic Creep Tests, 1469, 2005, pp. 177-197 (ASTM, West Conshohocken, PA, USA).
  24. N. Sivasithamparam, M. Karstunen, P. Bonnier, Modelling creep behaviour of anisotropic soft soils, Comput. Geotech. 69 (2015) 46-57, https://doi.org/10.1016/j.compgeo.2015.04.015.
  25. X. Xie, S.W. Qi, F.S. Zhao, D.H. Wang, Creep behavior and the microstructural evolution of loess-like soil from Xi'an area, China, Eng. Geol. 236 (2018) 43-59, https://doi.org/10.1016/j.enggeo.2017.11.003.
  26. R. Pusch, R.N. Yong, M. Nakano, Geologic Disposal of High Level Radioactive Waste, CRC Press, Taylor and Francis Group, New York, USA, 2018.
  27. S. Lacasse, T. Berre, Undrained creep susceptibility of clays. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 2005, pp. 531-536.
  28. M. Juvankoski, Buffer Design 2012. Technical Report POSIVA-12-14, Posiva Oy, Helsinki, Finland, 2012.
  29. W.J. Cho, J.W. Lee, C.H. Kang, A compilation and evaluation of thermal and mechanical properties of compacted bentonite for the performance assessment of engineered barriers in the high-level waste repository, KAERI report, KAERI/TR-1826/2001. KR0100897. [In Korean], https://www.osti.gov/etdeweb/servlets/purl/20201047, 2001.
  30. H. Kikuchi, K. Tanai, K. Matsumoto, H. Sato, K. Ueno, T. Tetsu, Hydraulic characteristics of buffer material-II: the influence which saline water exert on hydraulic properties of bentonite buffer material, JNC Tech. Report, JNC TN8430 2003-002 (2003) [In Japanese], https://jopss.jaea.go.jp/pdfdata/JNC-TN8430-2003-002.pdf.
  31. O. Karnland, Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository, SKB Technical Report TR-10-60, Stockholm, Sweden (2010).
  32. X. Pintado, M.d.M. Hassan, J. Martikainen, Thermo-Hydro-Mechanical Tests of Buffer Material; Report 2012-49, 2013 (POSIVA, Eurajoki, Finland).
  33. D.A. Dixon, Review of the T-H-M-C Properties of MX-80 Bentonite, NWMO, Toronto, Canada, 2019. NWMO-TR-2019-07.
  34. C.C. Chung, G.L. Ren, I.T. Chen, C.J. Cuo, H.C. Chang, Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design, Nucl. Eng. Technol. (2023), https://doi.org/10.1016/j.net.2023.11.043.
  35. American Colloid Company, 2021. Retrieved from, https://www.mineralstech.com/docs/default-source/performance-materials-documents/american-colloid-company/product-solutions/mti_mcst_tds_mx-80.pdf?sfvrsn=beea2df7_2.
  36. Japanese Kunimine Industries Co, LTD, 2021. Retrieved from, https://www.kunimine.co.jp/download/pdf/catalog/catalog_kunigel_v1.pdf.
  37. AECL, The Disposal of Canada's Nuclear Fuel Waste: Engineered Barriers Alternatives, 1994. AECL-1078COG-93-8. Atomic Energy of Canada Limited (AECL).
  38. H. Akgun, M. Ada, M.K. Kockar, Performance assessment of a bentonite-sand mixture for nuclear waste isolation at the potential Akkuyu Nuclear Waste Disposal Site, southern Turkey, Environ. Earth Sci. 73 (2015) 6101-6116, https://doi.org/10.1007/s12665-014-3837-x.
  39. W.J. Sun, C. Liu, D.S. Yang, D.A. Sun, Evaluation of hydro-mechano-chemical behaviour of bentonite-sand mixtures, J. Rock Mech. Geotech. Eng. 14 (2) (2021) 637-652, https://doi.org/10.1016/j.jrmge.2021.10.008.
  40. Taiwan Chin-Ching Foundry Sand Co, Ltd, 2021. Retrieved from, https://www.chin-ching.com.tw/tw/product_infos/sand-1.htm.
  41. H. Komine, K. Yasuhara, S. Murakami, Swelling characteristics of bentonites in artificial seawater, Can. Geotech. J. 46 (2) (2009) 177-189, https://doi.org/10.1139/T08-120.
  42. A.M. Tang, Y.J. Cui, G. Richard, P. D'efossez, A study on the air permeability as affected by compression of three French soils, Geoderma 162 (2011) 171-181, https://doi.org/10.1016/j.geoderma.2011.01.019.
  43. W.M. Ye, Z.R. Liu, Y.J. Cui, Z. Zhang, Q. Wang, Y.G. Chen, Features and modeling of time-history curves of swelling pressure of bentonite, Chin. J. Geotech. Eng. 42 (1) (2020) 29-36 ([In Chinese]).
  44. ASTM, Standard Test Methods for One-Dimensional Swell or Collapse of Soils, D4546-21, ASTM, West Conshohocken, PA, USA, 2021.
  45. A. Dueck, L.E. Johannesson, O. Kristensson, S. Olsson, Report on Hydro-Mechanical and Chemical-Mineralogical Analyses of the Bentonite Buffer in Canister Retrieval Test, 2011. SKB Technical Report TR-11-07, Stockholm, Sweden.
  46. D. Ito, H.L. Wang, H. Komine, Hydraulic conductivity test system for compacted 2-mm-thick bentonite specimens, Soils Found. 62 (5) (2022) 101210, https://doi.org/10.1016/j.sandf.2022.101210.
  47. ASTM, Standards Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, D5084-16a, ASTM, West Conshohocken, PA, USA, 2016.
  48. ASTM, Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, ASTM, West Conshohocken, PA, USA, 2011. D3080-2011.
  49. G. Li, Y. Wang, Y. Hu, Shear creep mechanical properties and damage model of mudstone in open-pit coal mine, Science Report 12 (2022) 5148, https://doi.org/10.1038/s41598-022-08488-3.
  50. L. Borgesson, J. Hernelind, Coupled Thermo-Hydro-Mechanical Calculations of the Water Saturation Phase of a KBS-3 Deposition Hole, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden, 1999. SKB Technical Report TR-99-41.
  51. U. Bergstrom, K. Pers, Y. Almen, International Perspective on Repositories for Low Level Waste, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden, 2011. SKB Report R-11-16.
  52. D.A. Sun, H.B. Cui, W.J. Sun, Swelling of compacted sand-bentonite mixtures, Appl. Clay Sci. 43 (3) (2009) 485-492, https://doi.org/10.1016/j.clay.2008.12.006.
  53. W. Su, Q. Wang, W.M. Ye, Y.F. Deng, Y.G. Chen, Swelling pressure of compacted MX80 bentonite/sand mixture prepared by different methods, Soils Found. 61 (4) (2021) 1142-1150, https://doi.org/10.1016/j.sandf.2021.06.005.
  54. H. Komine, N. Ogata, New equations for swelling characteristics of bentonite-based buffer materials, Can. Geotech. J. 40 (2) (2003) 460-475, https://doi.org/10.1139/t02-115.
  55. C. Gatabin, G. Touze, C. Imbert, W. Guillot, P. Billaud, ESDRED project, Module 1-selection and THM characterization of the buffer material, in: Proceedings of the International Conference Underground Disposal Unit Design & Emplacement Processes for a Deep Geological Repository, 2008, pp. 16-18 (June, Prague).
  56. M.V. Villar, MX-80 Bentonite: Thermal-hydro-mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project (No. CIEMAT-1053), Centro de Investigaciones Energeticas, Spain, 2005.
  57. H. Komine, Simplified evaluation on hydraulic conductivities of sand-bentonite mixture backfill, Appl. Clay Sci. 26 (4) (2004) 13-19, https://doi.org/10.1016/j.clay.2003.09.006.
  58. L. Borgesson, R. Pusch, Rheological Properties of a Calcium Smectite, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden, 1987. SKB Technical Report TR-87-31.
  59. R. Pusch, R. Yong, M. Nakano, High-level Radioactive Waste (HLW) Disposal: a Global Challenge, WIT Press, Southampton, Boston, USA, 2011.
  60. L. Ohazuruike, K.J. Lee, A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems, Nucl. Eng. Technol. 55 (4) (2023) 1495-1506, https://doi.org/10.1016/j.net.2023.01.007.