• Title/Summary/Keyword: volume strain

Search Result 718, Processing Time 0.024 seconds

PILOT SCALE FISH PRODUCTION IN WATER RECYCLING SYSTEM (순환여과식 사육수정화 재사용방법에 의한 Pilot 규모의 어류양식시험)

  • KIM In-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.195-206
    • /
    • 1980
  • Fish were grown in a water recycling rearing system consisting of a filter system, of which the area is about $30\;m^2$ and the volume of filter gravels is about $15\;m^3$, 6 rearing and 2 supplementary tans about $7\;m^2$ of surface area each. The results for 180 days from April 18 to October 14,1980 are summarized as following: One rearing tank was used for main experiment stocked with an equal number, and weight of each Israeli strain and $F_1$, hybrid between this strain and Korean local strain of common carp. Gross total production was 461 kg with a net production of 395 kg, and the Israeli strain grew to about 8 times initial weight and the hybrid about 6 times. Based on an analysis of results of the above mentioned main experiment and the other miscellaneous fish grown in the remaining tanks, it was considered to be feasible to implement a commercial production in this system by improving parts of the system and adding a number of the units. A special problem seems to be an adoption of more effective aeration device when fish loading increases. A solid waste removal system was deviced by use of by-pass flow ana this system worked very efficiently in view of supply water economy. A serious problem encountered in this experiment was heavy outbreaks of the gill-fluke, Dactylogyrus sp. which was relatively easily eradicated with Dipterex or DDVP treatment in the first trials, but later on strains which were resistant to any of these chemicals appeared.

  • PDF

A STUDY ON THE EVALUATION OF POLYMERIZATION SHRINKAGE OF COMPOSITE AND COMPOMER USING STRAIN GAUGE METHOD (스트레인 게이지법을 이용한 복합레진과 컴포머의 중합수축 평가에 관한 연구)

  • Kim, Yeun-Chul;Kim, Jong-Soo;Kwon, Soon-Won;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • The purpose of this study was to compare the polymerization shrinkage and the compressive strength of composite and compomer cured with two different light sources ; conventional halogen-light curing unit and recently-developed plasma arc curing unit. The 'strain gauge method' was used for determination of polymerization shrinkage and the compressive strength was measured by universal testing machine. The results of the present study can be summarized as follows: 1. Filling materials in polyethylene molds showed the initial expansion in the early phase of polymerization. This was followed by the rapid contraction in volume during the first 60 seconds and gradually diminished as curing process continued. 2. The polymerization shrinkage in tooth samples was generally lower than in the mold samples. 3. The generally lower amount of linear polymerization shrinkage was observed in compomer and plasma arc curing unit group when compared to composite and conventional curing unit. 4. The higher compressive strength values was found in composite groups regardless curing methods. The results of this study strongly support the application of plasma arc system and fluoride-containing compomer in the field of clinical pediatric dentistry claiming its effectiveness in curing the esthetic dental materials and the anticariogenic capacity.

  • PDF

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Regional Amyloid Burden Differences Evaluated Using Quantitative Cardiac MRI in Patients with Cardiac Amyloidosis

  • Jin Young Kim;Yoo Jin Hong;Kyunghwa Han;Hye-Jeong Lee;Jin Hur;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.880-889
    • /
    • 2021
  • Objective: This study aimed to investigate the regional amyloid burden and myocardial deformation using T1 mapping and strain values in patients with cardiac amyloidosis (CA) according to late gadolinium enhancement (LGE) patterns. Materials and Methods: Forty patients with CA were divided into 2 groups per LGE pattern, and 15 healthy subjects were enrolled. Global and regional native T1 and T2 mapping, extracellular volume (ECV), and cardiac magnetic resonance (CMR)-feature tracking strain values were compared in an intergroup and interregional manner. Results: Of the patients with CA, 32 had diffuse global LGE (group 2), and 8 had focal patchy or no LGE (group 1). Global native T1, T2, and ECV were significantly higher in groups 1 and 2 than in the control group (native T1: 1384.4 ms vs. 1466.8 ms vs. 1230.5 ms; T2: 53.8 ms vs. 54.2 ms vs. 48.9 ms; and ECV: 36.9% vs. 51.4% vs. 26.0%, respectively; all, p < 0.001). Basal ECV (53.7%) was significantly higher than the mid and apical ECVs (50.1% and 50.0%, respectively; p < 0.001) in group 2. Basal and mid peak radial strains (PRSs) and peak circumferential strains (PCSs) were significantly lower than the apical PRS and PCS, respectively (PRS, 15.6% vs. 16.7% vs. 26.9%; and PCS, -9.7% vs. -10.9% vs. -15.0%; all, p < 0.001). Basal ECV and basal strain (2-dimensional PRS) in group 2 showed a significant negative correlation (r = -0.623, p < 0.001). Group 1 showed no regional ECV differences (basal, 37.0%; mid, 35.9%; and apical, 38.3%; p = 0.184). Conclusion: Quantitative T1 mapping parameters such as native T1 and ECV may help diagnose early CA. ECV, in particular, can reflect regional differences in the amyloid deposition in patients with advanced CA, and increased basal ECV is related to decreased basal strain. Therefore, quantitative CMR parameters may help diagnose CA and determine its severity in patients with or without LGE.

Isolation of Phytase Producing Pseudomonas fragi and Optimization of its Phytase Production (Acid Phytase를 생산하는 Pseudomonas fragi의 분리와 phytase의 생산조건)

  • Kim, Young-Jin;Jang, Eun-Seok;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • A bacterial strain producing a high level of an extracellular phytase was isolated from livestock waste water, identified as a strain of Pseudomonas fragi and designated as Pseudomonas fragi Y9451. Under the phytase production medium, the activity of phytase reached the highest level after 120 hours of incubation. On the effect of carbon sources on the phytase production, the most favorable carbon source for phytase production was fructose. As for the effect of nitrogen sources, high levels of phytase activity were detected in the medium containing nutrient broth as the nitrogen source. Free $PO_4^{3-}$ inhibited phytase production with increasing concentration of $KE_2PO_4$ and phytate in the media. The addition of $CaCl_2$ and $MgSO_4$ also resulted in the inhibition of phytase production. To investigate the effect of aeration on the phytase production, different volumes of culture broth in Erlenmeyer flasks were incubated in rotary shaker at the speed of 200 rpm. As a result, a high level of phytase activity was detected at small volume of culture broth as compared to larger volume because of its more aerobic condition.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

Oral tissue response to soft tissue expanders prior to bone augmentation: in vitro analysis and histological study in dogs

  • Yoo, Jung Min;Amara, Heithem Ben;Kim, Min Kyoung;Song, Ju Dong;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.152-163
    • /
    • 2018
  • Purpose: To determine whether the swelling and mechanical properties of osmotic self-inflating expanders allow or not the induction of intraoral soft tissue expansion in dogs. Methods: Three different volumes (0.15, 0.25, and 0.42 mL; referred to respectively as the S, M, and L groups) of soft tissue expanders (STEs) consisting of a hydrogel core coated with a silicone-perforated membrane were investigated in vitro to assess their swelling behavior (volume swelling ratio) and mechanical properties (tensile strength, tensile strain). For in vivo investigations, the STEs were subperiosteally inserted for 4 weeks in dogs (n=5). Soft tissue expansion was clinically monitored. Histological analyses included the examination of alveolar bone underneath the expanders and thickness measurements of the surrounding fibrous capsule. Results: The volume swelling ratio of all STEs did not exceed 5.2. In tensile mode, the highest mean strain was registered for the L group ($98.03{\pm}0.3g/cm$), whereas the lowest mean value was obtained in the S group ($81.3{\pm}0.1g/cm$), which was a statistically significant difference (P<0.05). In addition, the S and L groups were significantly different in terms of tensile strength ($1.5{\pm}0.1g/cm$ for the S group and $2.2{\pm}0.1g/cm$ for the L group, P<0.05). Clinical monitoring showed successful dilatation of the soft tissues without signs of inflammation up to 28 days. The STEs remained volumetrically stable, with a mean diameter in vivo of 6.98 mm, close to the in vitro post-expansion findings (6.69 mm). Significant histological effects included highly vascularized collagen-rich fibrous encapsulation of the STEs, with a mean thickness of $0.67{\pm}0.12mm$. The bone reaction consisted of resorption underneath the STEs, while apposition was observed at their edges. Conclusions: The swelling and mechanical properties of the STEs enabled clinically successful soft tissue expansion. A tissue reaction consisting of fibrous capsule formation and bone loss were the main histological events.

The Stress -Strain Behavior of Asan Marine Soil (아산만 해성토의 응력 -변형률 거동)

  • Hong, Chang-Su;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.17-26
    • /
    • 1996
  • The undrained behavior of Asan marine soil was investigated by using an automated triaxial testing device. The stress-strain behavior at the preand postfailure state of marine soil under undrained compression and eatension conditions was compared with the behavior of pure silt, pure clay and the overall behavior of Asan marine soil was predicted with the modified Camflay model and the bounding surface model. The marine soil sampled in Asan bay area was clayey silts with 70oA silt-30% clay content and the testing samples were prepared in both undisturbed and remolded conditions. All samples are normally consolidated with 400 kPa of effective mean confining pressure and each sample is unloaded to 200, 100, 67 kPa, respectively. And then the shear test was performed with different confining pressure. According to experimental results, there exists an unique failure line whose slope is lower than silt's and higher than clay's. It is identified that the undrained shear strength of normally consolidated samples increases after crossing the phase transformation line because of volume dilation tendency which is not seen in clay. Overconsolidated samples show different soil behavior compared with pure silt due to its tendency of change in volume. It is also found that the overall behavior of Asan marine soil cannot be predicted precisely with the modified Cam-clay model and the bounding surface model.

  • PDF

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.