• Title/Summary/Keyword: volume strain

Search Result 718, Processing Time 0.025 seconds

Analytical solution for bending analysis of functionally graded beam

  • Sallai, Benoumrane;Hadji, Lazreg;Daouadji, T. Hassaine;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.829-841
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equilibrium equations are derived from the principle of virtual displacements. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

Constitutive equations for polymer mole and rubbers: Lessons from the $20^{th}$ century

  • Wagner, Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.293-304
    • /
    • 1999
  • Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensurable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand extension. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains due to deformation, and is modelled by a molecular stress function which in the tube concept of Doi and Edwards is the inverse of the relative tube diameter. Up to moderate strains, $f^2$ is found to be linear in the average stretch for melts as well as for rubbers, which corresponds to a constant tube volume. At large strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear and long-chain branched polymer melts in extensional flows.

  • PDF

Deformation Mechanism Map of Nanocrystalline Metallic Materials (나노결정립 금속재료의 변형기구지도)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.473-478
    • /
    • 2007
  • In this study, a deformation mechanism map of metallic nanocrystalline materials(NCMs) using the phase mixture model is proposed. It is based on recent modeling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NCMs. The proposed models adopted the concept of a 'phase mixture' in which the grain interior and the grain boundaries are treated as separate phases. The volume fraction of this grain boundary 'phase' may be quite appreciable in a NCM. Based on the theoretical model that provides an adequate description of the grain size dependence of plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NCMs, especially focusing on the deformation mechanisms was investigated. The deformation mechanism map is newly proposed with axes of strain rate, grain size and temperature.

A Study on the Surface Roughness in the A 5032 Sheet Metal Forming (A 5032 판재성형에서 발생하는 표면거칙기에 관한 연구)

  • 박서운;김진무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.546-551
    • /
    • 1997
  • In sheet metal forming, since the surface area of workpiece is apparently larger than the volume of it, the surface condition of the sheet metal is much varied. The formability of sheet metal is decided by the forming limit and the macroscopic suface defect as like fracture and wrinkle, and microscopic asponent, The factors affected in forming limit are stain herdening exponent, strain-rate scnsitivity exponent, anisotropic coefficient. The increasing of surface roughness is decresed the forming limit curve. It is known that the greater plastic deformation the more surface roughness by Kienzle, Osadaka. The purpose of this study is to investigate the influences of surface roughness in a uniaxial tension and the traperzoidal-shaped box drawing.

  • PDF

Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy

  • Torabi, A.R.;Berto, F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.723-740
    • /
    • 2014
  • A fracture criterion based on the strain energy density (SED) over a control volume, which embraces the notch edge, is employed in the present paper to assess the fracture loads of some U-notched Brazilian disk (UNBD) specimens. The specimens are made of commercial graphite and have been tested under pure mode I, pure mode II and mixed mode I/II loading. The results show that the SED criterion allows to successfully assess the fracture loads of graphite specimens for different notch tip radii and various mode mixity conditions with discrepancies that fall inside the scatter band of ${\pm}20%$.

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials (미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가)

  • 이승표;정재연;하성규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF