DOI QR코드

DOI QR Code

Deformation Mechanism Map of Nanocrystalline Metallic Materials

나노결정립 금속재료의 변형기구지도

  • 윤승채 (충남대학교 나노공학부) ;
  • 복천회 (충남대학교 나노공학부) ;
  • 곽은정 (충남대학교 나노공학부) ;
  • 김형섭 (충남대학교 나노공학부)
  • Published : 2007.10.01

Abstract

In this study, a deformation mechanism map of metallic nanocrystalline materials(NCMs) using the phase mixture model is proposed. It is based on recent modeling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NCMs. The proposed models adopted the concept of a 'phase mixture' in which the grain interior and the grain boundaries are treated as separate phases. The volume fraction of this grain boundary 'phase' may be quite appreciable in a NCM. Based on the theoretical model that provides an adequate description of the grain size dependence of plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NCMs, especially focusing on the deformation mechanisms was investigated. The deformation mechanism map is newly proposed with axes of strain rate, grain size and temperature.

Keywords

References

  1. R. Z. VaIiev, 2001, Developing SPD methods for processing bulk nanostructured materials with enhanced properties, Metal. Mater. Inter. Vol. 7, pp. 413-420 https://doi.org/10.1007/BF03027081
  2. H. S. Kim, 1998, A composite model for hardness of nanocrystalline materials, J. Kor. Inst. Met. & Mater., Vol. 36, pp. 2080-2084
  3. Y. Wang, M. Chen, F. Zhou, E. Ma, 2002, High tensile ductility in a nanostructured metal, Nature, Vol. 419, pp. 912-915 https://doi.org/10.1038/nature01133
  4. K. S. Kumar, H. V. Swygenhoven, S. Suresh, 2003, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., Vol. 51, pp. 5743-5774 https://doi.org/10.1016/j.actamat.2003.08.032
  5. H. V. Swygenhoven, P. M. Derlet, A. G. Froseth, 2004, Stacking fault energies and slip in nanocrystalline metal, Nature Mater., Vol. 3, pp. 399-403 https://doi.org/10.1038/nmat1136
  6. V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, 2002, Grain-boundary diffusion creep in nanocrystalline palladium by molecular dynamics simulation, Acta Mater., Vol. 50, pp. 61-73 https://doi.org/10.1016/S1359-6454(01)00329-9
  7. H. J. Frost, M. F. Ashby, Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Cambridge University, UK
  8. H. S. Kim, 1998, A composite model for mechanical properties of nanocrystalline materials, Scripta Mater., Vol. 39, pp. 1057-1061 https://doi.org/10.1016/S1359-6462(98)00257-7
  9. H. S. Kim, M. B. Bush, 1999, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials, Nanostruct. Mater., Vol. 11, pp. 361-367 https://doi.org/10.1016/S0965-9773(99)00052-5
  10. H. S. Kim, M. B. Bush, Y. Estrin, 2000, A phase mixture model of a particle reinforced composite with fine microstructure, Mater. Sci. Eng. A, Vol. 276, pp. 175-185 https://doi.org/10.1016/S0921-5093(99)00281-6
  11. H. S. Kim, Y. Estrin, M. B. Bush, 2001, Constitutive modeling of strength and plasticity of nanocrystalline metallic materials, Mater. Sci. Eng. A, Vol. 316, pp. 195-199 https://doi.org/10.1016/S0921-5093(01)01246-1
  12. H. S. Kim, Y. Estrin, M. B. Bush, 2000, Plastic deformation behavior of fine grained materials, Acta Mater., Vol. 48, pp. 493-504 https://doi.org/10.1016/S1359-6454(99)00353-5
  13. H. S. Kim, Y. Estrin, 2005, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials, Acta Mater., Vol. 53, pp. 765-772 https://doi.org/10.1016/j.actamat.2004.10.028
  14. Y. Estrin, 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press, New York, p. 69
  15. N. Wang, Z. Wang, K. T. Aust, U. Erb, 1995, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metal!. Mater., Vol, 43, pp. 519-528 https://doi.org/10.1016/0956-7151(94)00253-E
  16. A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, 1989, On the validity of the Hall-Petch relationship in nanocrystalline materials, Scripta Metall., Vol. 23, pp. 1679-1683 https://doi.org/10.1016/0036-9748(89)90342-6