• Title/Summary/Keyword: volume strain

Search Result 718, Processing Time 0.029 seconds

Stabilization and Antifungal Activity of Isolated Symbiotic Bacteria from Entomopathogenic Nematodes (곤충병원성 선충에서 분리한 공생세균의 안정화 및 항진균활성)

  • Kang, Dong-Hee;Kim, Hyo-Hyun;Nam, Uk-Ho;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.132-139
    • /
    • 2015
  • In order to use the symbiotic bacteria from ethomophatogenic nematodes as a biological control agent for agriculture, the cultural condition for maintaining phase I and antifungal activity was investigated. Symbiotic bacteria (SB) 1 stain from nematodes were selected from the three strains isolated from entomopathogenic nematodes. The growth of the SB 1 strain in NB, TSB, TY and YS medium was higher than that of the SB 2 and SB 3 strain. The packed cell volume of the SB 1 strain was reduced in NB medium which showed radical pH change. Phase I of the SB 1 strain was maintained in TSB medium after being stored for 2 weeks at $4^{\circ}C$. Culture broth with the SB 1 strain in TSB medium for 6 days and 7 days showed antifungal activities against Rhizoctonia solani KACC 40142, Botrytis cinerea Pers. KACC 40854, and Botrytis cinerea Pers. KACC 41008. Culture broth with the SB 1 strain in TSB medium containing 100 mM L-proline for 5 days showed antifungal activities against Rhizoctonia solani KACC 40142, and Botrytis cinerea Pers. KACC 40854.

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

A Study on Analyzing Thermal Strain of Weldment during Cooling used at Low MS Point Weld Consumables (MS Point 저감 용접재에 적용한 냉각시 용접부 열변형률 분석에 관한 연구)

  • Ha, Yunsok;Nam, Seongkil;Park, Sejin;Kwon, Changgil
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.37-43
    • /
    • 2013
  • This study targets to make clear the connection between MS (Martensite start) point and welding shrinkage. We approved that a Martensite-transformed weldment may not yield state under low MS point, but also admitted the limitation of numerical calculation by inherent strain approach or thermal strain approach. Therefore, new thermal strain formulae during cooling stages were made. As a thermal strain is obtained by integrating thermal extension coefficient, a constant of integration should be decided. In our suggested formulae, the origin was based on totally remained austenite, and added strain from volume changes in Martensite transformation was based on totally transformed ferrite. Through the suggested methodology, It is verified that an MS point under a critical temperature can let weld shrinkage relax and the critical value can be obtained. For supporting this process, 15 weld-consumables were made, were tested by fillet type and were measured. As a result, a positive correlation between MS point and level of weld-distortion was obtained, but it was rather weak.

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

Prediction of Distribution of Solid Volume Fraction in Semi-Solid Materials Based on Mixture Theory (혼합이론에 근거한 반용융 재료의 고상률 분포 예측)

  • 윤종훈;김낙수;임용택
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.399-406
    • /
    • 1999
  • It is more appropriate to treat that the semi-solid mixture as a single phase material that obeys incompressibility in the global sense and to analyze the liquid flow only locally than the approach based on compressible yield criteria. In the present study, a numerical algorithm of updating the solid volume fraction based on mixture theory has been developed. Finite element analysis of simple upsetting was carried out using the proposed algorithm to investigate the degree of macro-segregation according to friction conditions and compressive strain rates under the isothermal condition. The simulation results were compared to experimental results available in reference to test the validity of the currently proposed algorithm. Since the comparison results show a good agreement it is construed that the proposed algorithm can contribute to the development of numerical analysis of determining the solid volume fraction semi-solid processing.

  • PDF

Piezoelectric Properties of O-3 Composite with $PbTiO_3$--Polymer ($PbTiO_3$-폴리머 O-3 복합 재료의 압전 특성에 관한 연구)

  • 김일호;박인길;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.50-53
    • /
    • 1988
  • Lead titanate powders were prepared by mixed-oxide and sol-gel method. O-3 composites were prepared with these powders using Eccogel polymer. According to the volume percent of the PbTiO$_3$ powders, dielectric, piezoelectric properties and poling conditions were investigated. Relative dielectric constants were exponentially increased with volume percent of PbTiO$_3$. Piezoelectric strain coefficients (d$_{33}$ ) were increased with volume percent of PbTiO$_3$. Figure of merit (d$_{h}$.g$_{h}$) for the O-3 composites prepared by the mixed-oxide and sol-gel method were 2728(x10$^{-15}$ $m^2$/N) and 3100(x10$^{-15}$ $m^2$/N) at 70 volume percent of PbTiO$_3$, respectively.ely.

  • PDF

Right Atrial Strain in Preterm Infants With a History of Bronchopulmonary Dysplasia

  • Soo Jung Kang;Hyemi Jung;Seo Jung Hwang;Hyo Jin Kim
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.2
    • /
    • pp.112-122
    • /
    • 2022
  • BACKGROUND: Few studies have utilized right atrial (RA) strain to evaluate right ventricular (RV) diastolic dysfunction in preterm infants with bronchopulmonary dysplasia (BPD). We aimed to evaluate the associations of RA strain with BPD severity and respiratory outcomes in preterm infants with BPD. METHODS: We retrospectively studied 153 infants with BPD born before 32 weeks of gestational age at CHA Bundang Medical Center. Peak longitudinal right atrial strain (PLRAS) was obtained using velocity vector imaging and compared among infants across BPD severity. Conventional echocardiographic parameters and clinical characteristics were also evaluated. RESULTS: In infants with severe BPD, mean gestational age (27.4 ± 2.1 weeks) and mean birth weight (971.3 ± 305.8 g) were significantly smaller than in those with mild BPD (30.0 ± 0.9 weeks, 1,237.3 ± 132.2 g) and moderate BPD (29.6 ± 1.3 weeks, 1,203.2 ± 214.4 g). PLRAS was significantly lower in infants with severe BPD (26.3 ± 10.1%) than in those in the moderate BPD group (32.4 ± 10.9%) or mild BPD group (31.9 ± 8.3%). Tricuspid E/e' and maximum RA volume index were similar across BPD severity. A decrease in PLRAS was significantly correlated with increased duration of mechanical ventilation duration; however, tricuspid E/e' and maximum RA volume index were not. CONCLUSIONS: Evaluating PLRAS with other parameters in infants with BPD might detect RV diastolic dysfunction. Longer follow-up and larger study populations may elucidate the association between PLRAS and respiratory outcomes in infants with BPD.

Experimental Study on the Triaxial Compressive Behaviour of Unsaturated Soil (불포화토의 삼축압축거동에 관한 실험적 연구)

  • Kim, Young-Seok;Oka, Fusao;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1224-1227
    • /
    • 2006
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. The measurement of volume changes were performed with 0.5% of the maximum error under the axial strain ratio of less than 10%. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction. During the shearing processes, the level of maximum deviator stress under the initial suction pressure of 50kPa was higher than that under the initial suction pressure of 10kPa. On the other hand, the volume changes became smaller under the increase in the initial suction pressure.

  • PDF

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.