• Title/Summary/Keyword: volume of fluid method

Search Result 652, Processing Time 0.023 seconds

Natural Frequency of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 사각평판의 고유진동수)

  • Jeong, Kyeong-Hoon;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.908-913
    • /
    • 2002
  • An analytical study is presented on the hydroelastic vibration of two rectangular identical plates coupled with a bounded fluid by using the finite Fourier series expansion method. It is observed that the two contrastive modes, the so called the out-of-phase and in-phase modes appear. The proposed analytical method is verified by observing a good agreement to three dimensional finite element analysis results. All natural frequency of the in-phase modes can be predicted well by the combination of the dry beam modes. The theoretical prediction for the out-of-phase mode can be improved by using the polynomial functions satisfying the plate boundary conditions and fluid volume conservation instead of using dry beam modes.

  • PDF

Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows

  • Ghaitani, M.;Majidian, A.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.267-285
    • /
    • 2017
  • This paper addresses vibration and instability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying viscous fluid. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Flugge shell model is applied for mathematical modeling of structure. Based on energy method and Hamilton's principal, the motion equations are derived. Differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as volume percent of CNTs, elastic medium, boundary condition and geometrical parameters are discussed.

Optimization of Convective Trapezoidal Profile Fin having Fluid inside the Wall (내벽에 유체가 있는 대류 사다리꼴 형상 Fin의 최적화)

  • Jeong Byung-Cheol;Lee Sung-Joo;Yoon Sea-Chang;Kang Hyung Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-102
    • /
    • 2006
  • This study analyzes and optimizes a design for a trapezoidal profile straight fin using one-dimensional analytical method. The heat transfer, fin length and fin height are optimized as a function of fin volume, fin shape factor and fin base length. In this optimization, convection characteristic number over fin surface and that of fluid inside fin wall are considered. One of the results shows that the maximum heat loss increases as fin volume increases and both fin shape factor and fin base length decrease.

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.

An Advection Scheme for the Transport of Fractional Volume of an Incompressible Fluid (비압축성 유체의 체적비 수송에 대한 대류항 계산 기법)

  • Kwak Ho Sang;Kuwahara Kunio
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • 서로 섞이지 않는 두 비압축성 유체의 유동을 해석하기 위하여 VOF 방법에 기초한 수치 기법을 개발하였다. 유체간의 계면형상의 거동은 유동장내의 유체의 점유체적비의 변화에 의해 묘사되는데 이를 지배하는 이동방정식을 풀기 위한 새로운 대류항 계산법을 고안하였다. 대류항은 유체계면의 방향에 따라 풍상법과 역풍상법의 적절한 조합을 취하여 계산하는데 여기에 대각방향의 상류효과를 포함시켜 시간에 대한 2차 정확도를 갖도록 하였다. 또한 이 방법을 유량보정수송(FCT)법과 결합시켜 해의 단조성을 보장하였다. 몇 가지 단순 문제에 대한 시험 결과 이 기법이 수치오차에 의한 계면형상의 변형과 파손을 감소시킴을 확인하였다.

  • PDF

Relationship between Cavitation Incipient and NPSH Characteristic for Inverter Drive Centrifugal Pumps

  • Rakibuzzaman, Md;Suh, Sang-Ho;Kim, Hyoung-Ho;Jung, Young-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.76-80
    • /
    • 2015
  • The purpose of this study is to understand the cavitation phenomena in centrifugal pumps through computational fluid dynamics method. NPSH characteristic curve is measured from different flow operating conditions. Steady state, liquid-vapor homogeneous method with two equations transport turbulence model is employed to estimate the NPSH curve in centrifugal pumps. The Rayleigh-Plesset cavitation model is adapted as source term for inter-phase mass transfer in order to understand cavitation phenomena in centrifugal pumps. The cavitation incipient curve is clearly estimated at different flows operating conditions. A relationship is made between cavitation incipient and NPSH curve. Also the effects on water vapor volume fraction and pressure load distributions on the impeller blade are also described.

A Level-Set Method for Simulation of Drop Motions

  • Son, Gi-Hun;Hur, Nahm-Keon;Suh, Young-Ho;Lee, Sang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.340-346
    • /
    • 2008
  • A level-set method is developed for computation of drop motions in various engineering applications. Compared with the volume-of-fluid method based on a non-smooth volume-fraction function, the LS method can calculate an interface curvature more accurately by using a smooth distance function. Also, it is straightforward to implement for two-phase flows in complex geometries unlike the VOF method requiring much more complicated geometric calculations. The LS method is applied to simulation of inkjet process, thin film pattering and droplet collisions.

  • PDF

A Level-Set Method for Simulation of Drop Motions

  • Son, Gi-Hun;Hur, Nahm-Keon;Suh, Young-Ho;Lee, Sang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.340-346
    • /
    • 2008
  • A level-set method is developed for computation of drop motions in various engineering applications. Compared with the volume-of-fluid method based on a non-smooth volume-fraction function, the LS method can calculate an interface curvature more accurately by using a smooth distance function. Also, it is straightforward to implement for two-phase flows in complex geometries unlike the VOF method requiring much more complicated geometric calculations. The LS method is applied to simulation of inkjet process, thin film pattering and droplet collisions.

  • PDF

Assessment of Optimization Methods for Design of Axial-Flow Fan (축류송풍기 설계를 위한 최적설계기법의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

Rheological behavior of dilute bubble suspensions in polyol

  • Lim, Yun-Mee;Dongjin Seo;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Low Reynolds number, dilute, and surfactant-free bubble suspensions are prepared by mechanical mixing after introducing carbon dioxide bubbles into a Newtonian liquid, polyol. The apparent shear viscosity is measured with a wide-gap parallel plate rheometer by imposing a simple shear flow of capillary numbers(Ca) of the order of $10^{-2}$ ~ $10^{-1}$ and for various gas volume fractions ($\phi$). Effects of capillary numbers and gas volume fractions on the viscosity of polyol foam are investigated. At high capillary number, viscosity of the suspension increases as the gas volume fraction increases, while at low capillary number, the viscosity decreases as the gas volume fraction increases. An empirical constitutive equation that is similar to the Frankel and Acrivos equation is proposed by fitting experimental data. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a newly developed two-dimensional numerical code using a finite volume method (FVM). Although the bubble is treated by a circular cylinder in the two dimensional analysis, numerical results are in good agreement with experimental results.