• Title/Summary/Keyword: volume measurement

Search Result 1,621, Processing Time 0.029 seconds

A Study on the Method of Non-Standard Cargo Volume Calculation Based on LiDar Sensor for Cargo Loading Optimization (화물 선적 최적화를 위한 LiDar 센서 기반 비규격 화물 체적산출 방법 연구)

  • Jeon, Young Joon;Kim, Ye Seul;Ahn, Sun Kyu;Jeong, Seok Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.559-567
    • /
    • 2022
  • The optimal shipping location is determined by measuring the volume and weights of cargo shipped to non-standard cargo carriers. Currently, workers manually measure cargo volume, but automate it to improve work inefficiency. In this paper, we proposed the method of a real-time volume calculation using LiDar sensor for automating cargo measurement of non-standard cargo. For this purpose, we utilized the statistical techniques for data preprocessing and volume calculation, also used Voxel Grid filter to light weighted of data which are appropriate in real-time calculation. We implemented the function of Normal vectors and Triangle Mesh to generate surfaces and Alpha Shapes algorithms to process 3D modeling.

Quantitative Analysis of the Orbital Volume Change in Isolated Zygoma Fracture (관골 단독 골절에서 안구 용적 변화의 정량적 분석)

  • Jung, Han-Ju;Kang, Seok-Joo;Kim, Jin-Woo;Kim, Young-Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.783-790
    • /
    • 2011
  • Purpose: The zygoma (Zygomaticomaxillary) complexes make up a large portion of the orbital floor and lateral orbital walls. Zygoma fracture frequently causes the posteromedial displacement of bone fragments, and the collapse or overlapping of internal orbital walls. This process consequently can lead to the orbital volume change. The reduction of zygoma in an anterolateral direction may influence on the potential bone defect area of the internal orbital walls. Thus we performed the quantitative analysis of orbital volume change in zygoma fracture before and after operation. Methods: We conducted a retrospective study of preoperative and postoperative three-dimensional computed tomography scans in 39 patients with zygoma fractures who had not carried out orbital wall reconstruction. Orbital volume measurement was obtained through Aquarius Ver. 4.3.6 program and we compared the orbital volume change of injured orbit with that of the normal contralateral orbit. Results: The average orbital volume of normal orbit was 19.68 $cm^3$. Before the operation, the average orbital volume of injured orbit was 18.42 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.18 $cm^3$ (6.01%) on average. After operation, the average orbital volume of injured orbit was 20.81 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.17 $cm^3$ (5.92%) on average. Conclusion: There are considerable volume changes in zygoma fracture which did not accompany internal orbital wall fracture before and after operation. Our study reflects the change of bony frame, also that of all parts of the orbital wall, in addition to the bony defect area of orbital floor, in an isolated zygoma fracture so that it evaluates orbital volume change more accurately. Thus, the measurement of orbital volume in isolated zygoma fractures helps predict the degree of enophthalmos and decide a surgical plan.

Development and Verification of a Hand-held Typed Monitoring System for Cardiac Output Measurement using Electrical Impedance Technique (전기적 임피던스 방법을 통한 hand-held 타입의 심박출량 모니터링 시스템 개발 및 검증)

  • Seo, Kwang-Seok;Sim, Myeong-Heon;Kim, Min-Yong;Yoon, Chan-Sol;Chung, Joo-Hong;Park, Sung-Bin;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1932-1938
    • /
    • 2012
  • The impedance cardiogram has been proposed as a non-invasive, continuous, operator independent, and cost-effective method for cardiac output monitoring. However, it can not be completely considered as non-restrictive method because of attached spot and band type electrodes. Therefore, we developed a improved convenient hand-held typed measurement system for cardiac output by electrical impedance technique. 80 subjects from Yonsei University and the surrounding areas, participated. All subjects measured stroke volume and cardiac output through Physioflow and developed system. To verify the developed system, statistical methods such as correlation, Wilcoxon signed ranks test, and the Bland-Altman analysis were used. The proposed system showed significant correlation in both male and female stroke volume(r=0.715, r=0.704) and cardiac output(r=0.826; r=0.804). From these results, it can be concluded that stroke volume and cardiac output could be improved convenient measurement using the both hands without the help of a specialist.

An Analysis of Elementary Mathematics and Science Textbooks for Grades 3 and 4: Focused on Capacity, Volume, Weight, and Mass (초등학교 3~4학년군 수학·과학 교과서 비교 분석: 들이, 부피, 무게, 질량을 중심으로)

  • Pang, JeongSuk;Kwon, MiSun
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.617-638
    • /
    • 2017
  • In order to make a connection in teaching similar concepts between mathematics and science in teaching similar concepts, this paper analyzed the contents related to capacity, volume, weight, and mass in the mathematics and science textbooks aligned with the national elementary curriculum. We first explored when to present such topics in both textbooks, and then analyzed in what ways the topics were addressed in terms of quantitative comparison, vocabulary, units of measurement, measurement, tools for measurement, estimation, and connections to real life. The results of this study showed that there were some aspects emphasized in common both in mathematics and science textbooks. The analysis of this study also demonstrated subtle but considerable differences according to the characteristics of two subject matters. Based on these results, this paper provides implications for elementary school teachers to consider in teaching capacity, volume, weight, and mass through mathematics and science lessons.

Durability evaluation depending on the insert size of conical Picks by the field test (삽입재 크기에 따른 코니컬 커터의 현장 내구성 평가 연구)

  • Choi, Soon-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • In this study, the durability of conical pick cutter was compared and analyzed by pre- and post-test visual inspection, measurement of weight loss and wear volume through field test on two types of conical pick cutters applied to rotary drum cutter. In the visual inspection, it was found that only 9 inserts were lost in the slim type conical pick cutter. This result show that the thickness of the head cover surrounding a insert was important to maintain the insert during excavation. The weight loss and wear volume of the heavy type conical pick cutter were less than half that of the slim type. From these results, it can be confirmed that heavy type is more useful than slim type in hard rock. It should be noted that, when determining the wear loss of the conical pick cutter, the mutual comparison of the weight measurement and the wear volume measurement results may be different due to the unit weight of the material and the spalling caused by excavation.

A Study on the Selection of Measurement Point for Automatic Environmental Noise Measurement System (환경소음자동측정망의 측정지점 선정에 관한 연구)

  • Lim, J.S.;Lee, B.C.;Jeong, D.J.;Lee, M.H.;Yang, K.H.;Oh, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.442-445
    • /
    • 2007
  • A noise reduction policy can be more effectively made when automatic environmental noise measurement system is set up. However, the local characteristic of noise pollution requires a lot of measurement points. This study considers that automatic environmental noise measurement system connects with automatic air pollution measurement system and noise map. The measurement points of traffic volume by the National Police Agency and the Ministry of Construction and Transportation are investigated to use at drawing the road traffic noise map. Finally, the effective application method of the environmental noise measurement vehicle is discussed.

  • PDF

A Study on the Measurement Uncertainty of Flowmeter Calibrator (유량계 교정장치의 측정불확도에 관한 연구)

  • Im, Gi-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.561-571
    • /
    • 2001
  • The standard uncertainty of flowrate measurement is obtained by combining that of independent variables. Gravimetric and volumetric method were applied to determine the flowrate and the standard uncertainties of flowrate measurement by both methods were evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainties of determining the flowrate were estimated from the sensitivity coefficient and the standard uncertainty of independent variables. For practical application, the methods for evaluating and expressing uncertainty in flow measurement were discussed. It was found that the uncertainties of the weighing and time measurement in gravimetric method, the volume and time measurement in volumetric method have dominant influence on that of flowrate measurement. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of flowrate measurement is shown clearly.

A Study on Breast Shape Analysis for Developing Brassiere of the Girls at Adolescence (사춘기 소녀용 브래지어 개발을 위한 흉부 형태 분석에 관한 연구)

  • 이경화;임정란
    • Journal of the Korean Society of Costume
    • /
    • v.40
    • /
    • pp.81-93
    • /
    • 1998
  • It is necessary to research shape of the breast of girls at adolescence for developing well-fit brassiers. 313 participants reside in Chonju and Kunsan were gathered for body measurement. The conclusion of this study can be summarized as follows. 1) The Analysis of Body Shape by Measurement. Comparing Age GroupⅠ(aged 10 to 12)' measurement with Age GroupⅡ(aged 13 to 15)', Each items has statistical significance. Two groups differed in the length, girth, depth, width items. 2) Factor Analysis of Body Measurement (1) Age GroupⅠ'characteristics were categorized Three Factor : Breast size and breast apex length. Breast volume, Length of the Breast part. (2) Age GroupⅡ' characteristics consist of four factors, which are named as breast size and its jut (first factor), breast volume (second factor), contour of breast profile & its jut (third factor), shoulder length (fourth factor). 3) Characteristics of Breast Shape. (1) Breast shapes of Age GroupⅠ are classified into three types. Types 1 is a protruded and more voluminous shape. Type 2 is the most voluminous and breast fatness is highest. Type 3 is the smallest and flat shape growing now. (2) Breast shapes of Age GroupⅡ are also classified into three types. Type 1 is the longest in length and middle in fatness, voluminous in size. Type 2 is the smallest in stature and the slimmest in fatness in breast shape. Type 3 is middle in length, the fattest and the most voluminous in breast.

  • PDF

Analysis of Heat and Vibration of Super-Precision Linear Motors (초정밀 선형 모터의 열$\cdot$진동 분석)

  • Lee Woo Young;Rim Kyung Hwa;Seol Jin Soo;Kim Hyun Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.1-8
    • /
    • 2005
  • Linear motor can be directly applied to the system needed linear motions without rotary motions. To control high-speed and high-resolution, the development of the linear motors is recently required in the high-integrated and speed process industry This paper presents thermal and vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the thermal behaviors and vibration characteristics of the advanced products. The thermal measurements are conducted for comparing the developed linear motor with the advanced linear motor and the Finite Volume Method(FVM) is used to identify the measurement results. And then the vibration measurement are carried out in the developed and advanced linear motors with respect to the speed. To identify the measurement results, the Finite Element Method is utilized in the developed and advanced linear motors, respectively. The FVM, FEM, and experiments make it possible to understand these characteristics. The improvement is suggested through their results conducted experiment and analyses.

  • PDF

Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact (광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상)

  • Huh, Young-Jung;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.