• Title/Summary/Keyword: voltage-based control

Search Result 1,873, Processing Time 0.041 seconds

Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network (코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어)

  • 김광원;이흥재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

A Speed Sensorless Control of Induction Motors Based on Feedforward Quick Torque Response Control Technique (피드포워드적 토크고속응답제어법을 이용한 유도전동기의 속도센서레스 제어)

  • Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.70-78
    • /
    • 1999
  • The vector controlled induction motor(I.M) with speed sensor has been widely used for variable speed drive systems. In these application fileds, speed sensorless control are expected strongly to progress reliability, simplicity and cost performance of I.M and to expand its application part. This paper describes a novel speed sensorless control method of I.M based on feedforward quick torque response control technique. Especially, this paper aimed at the realization of sensorless control in the very low speed region, The proposed method can be formulated simply from a motor circuit equation and conducted easily by detecting primary motor currents and a voltage command at every sampling time. Throughout some results of numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter, the validity of the method was successfully confirmed.

  • PDF

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

Speed Control of Induction Motor Driven by Stator Voltage-Controlled CSI (고정자전압제어 전류형 인버터에 의한 유도전동기의 속도제어)

  • Song, Joong-Ho;Yoon, Tae-Woong;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.583-586
    • /
    • 1991
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage-controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. The overall control systems with either voltage control loop or current and voltage control loops provided in addition to each frequency control scheme are analyzed by utilizing the root locus method and simulated by computer to illustrate the validity of this analysis.

  • PDF

Single-Chip Microprocessor Based Instantaneous Voltage Control of Inverter for UPS (Single-Chip 마이크로프로세서를 이용한 UPS용 인버터의 순시전압제어)

  • 최재호;박세현;민완기;김재식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.49-57
    • /
    • 1992
  • This paper proposes a Intel 8097 single-chip microprocessor based instantaneous voltage control scheme of inverter for UPS(Uninterruptible Power Supply). There microprocessors are used to control the output voltage and frequency of the inverter, the synchronization with by-pass, and the switching of the static switch. And the status and operating conditions of UPS systems is monitored by micro processor. The inverter output voltage is controlled instantaneously with a double regulation loop so that it has very good dynamic response for the varying loads or nonlinear loads as a rectifier. And also, the software and hardware of control system is described. From simulation and experimental results, it is shown that the proposed scheme has very good performance.

  • PDF

Direct Power Control of Three-Phase Boost Rectifiers by using a Sliding-Mode Scheme

  • Kim, Ju-Hye;Jou, Sung-Tak;Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1000-1007
    • /
    • 2013
  • This paper proposes a sliding-mode-based direct power control (DPC) method in a three-phase boost rectifier without the use of a voltage sensor. This sliding-mode-based DPC is used to improve transient-state response characteristics. This DPC can eliminate voltage sensors by calculating a voltage using a sensorless method, thus considerably reducing cost. This DPC first presents an effective algorithm that does not significantly affect the previous performance and does not need a voltage sensor. Thereafter, the effectiveness of the algorithm is verified by simulations and experiments.

New Control Strategy for Conventional VSI in Islanded Microgrid to Enhance Voltage Quality under Nonlinear Loads

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.351-352
    • /
    • 2015
  • This paper proposed a new control strategy for voltage source inverter (VSI) of effective fifth and seventh harmonic reduction in the point of common coupling (PCC) in islanded microgrid under nonlinear load without any additional hardware devices. The non-linear load regularly causes such harmonic distortion, which harmfully affect the performance of other loads or other distributed generation (DG) sources connect to the PCC. In order to improve the quality of delivered output voltage, these harmonic must be rejected. The proposed control strategy is developed based on the current controller formed by resonant controller parallel with a proportional integral controller, which perform on the fundamental reference frame. The reference current is estimated based on the voltage harmonic and the injecting power. The simulation and experimental results are shown to verify the effectiveness of proposed control method.

  • PDF

A Bidirectional Dual Buck-Boost Voltage Balancer with Direct Coupling Based on a Burst-Mode Control Scheme for Low-Voltage Bipolar-Type DC Microgrids

  • Liu, Chuang;Zhu, Dawei;Zhang, Jia;Liu, Haiyang;Cai, Guowei
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1609-1618
    • /
    • 2015
  • DC microgrids are considered as prospective systems because of their easy connection of distributed energy resources (DERs) and electric vehicles (EVs), reduction of conversion loss between dc output sources and loads, lack of reactive power issues, etc. These features make them very suitable for future industrial and commercial buildings' power systems. In addition, the bipolar-type dc system structure is more popular, because it provides two voltage levels for different power converters and loads. To keep voltage balanced in such a dc system, a bidirectional dual buck-boost voltage balancer with direct coupling is introduced based on P-cell and N-cell concepts. This results in greatly enhanced system reliability thanks to no shoot-through problems and lower switching losses with the help of power MOSFETs. In order to increase system efficiency and reliability, a novel burst-mode control strategy is proposed for the dual buck-boost voltage balancer. The basic operating principle, the current relations, and a small-signal model of the voltage balancer are analyzed under the burst-mode control scheme in detail. Finally, simulation experiments are performed and a laboratory unit with a 5kW unbalanced ability is constructed to verify the viability of the bidirectional dual buck-boost voltage balancer under the proposed burst-mode control scheme in low-voltage bipolar-type dc microgrids.

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.

Coordinated Voltage-Reactive Power Control Schemes Based on PMU Measurement at Automated Substations

  • Choi, Yun-Hyuk;Kang, Sang-Gyun;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1400-1407
    • /
    • 2015
  • This paper deals with methodology to control an automatic substation system. The control system can predict the power system condition by a voltage stability index (VSI). The strategies in this paper is called as Voltage-Reactive Power Control (VRPC), which regulates an abnormal voltage of a target substation by using coordination between tap changers and shunt capacitor/reactor. This method is efficient for better voltage profile. The monitoring substation includes whole of substations around the contingency event. The control quantities of the monitoring substations are decided by the calculation of the VSI, called as a Z-index. Case studies with BC Hydro-Quebec system are presented to illustrate this approach using real-time simulator.