• 제목/요약/키워드: voltage drop compensation

검색결과 81건 처리시간 0.024초

친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템 (Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor)

  • 손진근;전희종
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

배전계통의 전압조정기 운영방법에 따른 분산형전원 최대 도입 용량 산출 (The Maximum Installable DG Capacity According to Operation Methods of Voltage Regulator in Distribution Systems)

  • 김미영
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1263-1269
    • /
    • 2009
  • Stable and sustainable power supply means maintaining a certain level of power quality and service while securing energy resource and resolving environmental issues. Distributed generation (DG) has become an essential and indispensable element from environmental and energy security perspectives. It is known that voltage violation is the most important constraint for load variation and the maximum allowable DG. In distribution system, sending voltage from distribution substation is regulated by ULTC (Under Load Tap Changer) designed to maintain a predetermined voltage level. ULTC is controlled by LDC (Line Drop Compensation) method compensating line voltage drop for a varying load, and the sending voltage of ULTC calls for LDC parameters. The consequence is that the feasible LDC parameters considering variation of load and DG output are necessary. In this paper, we design each LDC parameters determining the sending voltage that can satisfy voltage level, decrease ULTC tap movement numbers, or increase DG introduction. Moreover, the maximum installable DG capacity based on each LDC parameters is estimated.

연료전지 시스템을 이용한 전기철도 급전계통 전압강하 보상 (The Voltage Drop Compensation of Electric Railway Feeding system using a Fuelcell System)

  • 김재문
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.342-348
    • /
    • 2015
  • In this paper, fuel cell power generation system that is being studied in recent railway field was applied to compensate for the voltage drop due to the load as driving electric vehicle. PSIM simulation program is to be used to implement the modeling of the electric railway for AC AT feeder system. For it, It was applied to the product-type single-phase PLL algorithm, step-down converter is controlled as power so as to have the fuelcell generation system. Based on it's result, a reactive power due to the catenary impedance in accordance with the current flowing is compensated as linked with fuelcell generation system which supplied the current to the power supply grid. and then its performance was confirmed that voltage compensation effect obtained at SubStation (SS), SubSectioning Post (SSP), Sectioning Post (SP).

SVC를 이용한 전기철도 급전시스템에서의 전압강하 보상 (Compensation of Voltage Drop Using the SVC in Electric Railway Power Supply System)

  • 방성원;정현수;정창호;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.289-291
    • /
    • 2001
  • This paper represents the application of the Static Var Compensator (SVC) on the electric railway power supply system to compensate for the voltage drop. The high reactance of line and a heavy train load consume a significant amount of the reactive power which results the voltage drop. This paper shows that the SVC is necessary for voltage compensation in the railway power supply system and verify effectiveness of the SVC through the simulation by using PSCAD/EMTDC. In this paper, the case studies were performed with the various line length and train loads.

  • PDF

배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법 (Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems)

  • 박재형;전철우;임성일
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상 (Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System)

  • 정현수;방성원;김진오
    • 조명전기설비학회논문지
    • /
    • 제16권3호
    • /
    • pp.29-36
    • /
    • 2002
  • 최근 들어 국내 전기철도가 고속 대용량화되고 새로운 전력반도체 기술이 전력변환장치에 채용되면서 이로 인해 AT급전계통에 전압강하 등 전력품질 문제가 대두되고 있다. 지금까지 급전계통의 전압강하 대책으로는 직렬콘덴서(SC)를 주로 설치/운용하였으나 기술적인 한계로 인해 충분한 효과를 달성하지 못하고 있으며 고조파 공진현상도 새롭게 문제시 되고 있다. 또한 신규 전기철도 건설에 따른 전철변전소 위치확보 문제와 운행선로에서의 수송량 증가에 따른 열차 증량편성 및 시격(열차운행시간 간격)단축으로 인한 부하 중대가 예상되고 있으며, 급전사고로 인한 인근 전철변전소로부터의 연장급전 운용 등도 고려해야 하므로 이에 따른 급전시스템의 전압강하 및 전력품질 보상 대책이 요구되고 있다. 따라서 본 논문에서는 효과적인 보상대책 설비의 하나로 TSC방식 SVC를 전기철도의 AT 급전시스템에 적용하는 방안을 검토하고 PSCAD/EMTDC를 이용하여 시뮬레이션을 통해 확인하였다.

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.

순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터 (3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation)

  • 한석우;최규하
    • 전력전자학회논문지
    • /
    • 제5권6호
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

A Communicationless PCC Voltage Compensation Using an Improved Droop Control Scheme in Islanding Microgrids

  • Ding, Guangqian;Gao, Feng;Li, Ruisheng;Wu, Bingxin
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.294-304
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation method for islanding microgrids using an improved power sharing control scheme among distributed generators (DGs) without communication. The PCC voltage compensation algorithm is implemented in the droop control scheme to reduce the PCC voltage deviation produced by the droop controller itself and the voltage drop on the line impedance. The control scheme of each individual DG unit is designed to use only locally measured feedback variables and an obtained line impedance to calculate the PCC voltage. Therefore, traditional voltage measurement devices installed at the PCC as well as communication between the PCC and the DGs are not required. The proposed control scheme can maintain the PCC voltage amplitude within an allowed range even to some extent assuming inaccurate line impedance parameters. In addition, it can achieve proper power sharing in islanding microgrids. Experimental results obtained under accurate and inaccurate line impedances are presented to show the performance of the proposed control scheme in islanding microgrids.